FINAL CONTRACT REPORT VTRC 07-CR10

# ASPHALT MATERIALS CHARACTERIZATION IN SUPPORT OF IMPLEMENTATION OF THE PROPOSED MECHANISTIC-EMPIRICAL PAVEMENT DESIGN GUIDE

GERARDO W. FLINTSCH, Ph.D., P.E. Director, Center for Sustainable Transportation Infrastructure VTTI, Virginia Tech

> AMARA LOULIZI, Ph.D., P.E. Research Scientist, CSTI VTTI, Virginia Tech

STACEY D. DIEFENDERFER Research Scientist Virginia Transportation Research Council

KHALED A. GALAL, Ph.D. Research Scientist Virginia Transportation Research Council

BRIAN K. DIEFENDERFER, Ph.D. Research Scientist Virginia Transportation Research Council



http://www.virginiadot.org/vtrc/main/online\_reports/pdf/07-cr10.pdf

#### Standard Title Page - Report on State Project

| Report No.:        | Report Date:           | No. Pages:                    | Type Report:                           | Project No.:                                                              |
|--------------------|------------------------|-------------------------------|----------------------------------------|---------------------------------------------------------------------------|
| VTRC 0/-CR10       | January 2007           | 48                            | Final Contract                         | 78286                                                                     |
|                    |                        |                               | Period Covered:                        | Contract No.                                                              |
|                    |                        |                               | August 2005–May 2006                   |                                                                           |
| Title:             |                        |                               |                                        | Key Words: mechanistic-empirical,                                         |
| Asphalt Materials  | Characterization in    | Support of Imple              | ementation of the Proposed             | pavement design, HMA, characterization,                                   |
| Mechanistic-Emp    | irical Pavement Des    | ign Guide                     |                                        | dynamic modulus, creep compliance,<br>resilient modulus, indirect tensile |
| Authors:           |                        |                               |                                        | resment modulus, maneet tensite                                           |
| Gerardo W. Flints  | ch, Amara Loulizi,     | Stacey D. Diefen              | derfer, Khaled A. Galal,               |                                                                           |
| and Brian K. Dief  | enderfer               | 2                             |                                        |                                                                           |
| Performing Organ   | ization Name and A     | ddress:                       |                                        |                                                                           |
| Virginia Tech Tra  | nsportation Institute  | ;                             |                                        |                                                                           |
| 3500 Transportati  | on Research Plaza      |                               |                                        |                                                                           |
| Blacksburg, VA 2   | 4061                   |                               |                                        |                                                                           |
| Sponsoring Agene   | cies' Name and Add     | ress:                         |                                        |                                                                           |
| Virginia Departm   | ent of Transportation  | n                             |                                        |                                                                           |
| 1401 E. Broad Str  | eet                    |                               |                                        |                                                                           |
| Richmond, VA 23    | \$219                  |                               |                                        |                                                                           |
| Supplementary N    | otes                   |                               |                                        |                                                                           |
| Abstract           |                        |                               |                                        |                                                                           |
| The proposed       | Mechanistic Empiri     | nal Pavement De               | sign Guide (MEPDG) proced              | ure is an improved methodology for                                        |
| navement design    | and evaluation of na   | ving materials                | Since this new procedure dependent     | and s heavily on the characterization of the                              |
| fundamental engi   | neering properties of  | s a thorough material charact | refized on the characterization of the |                                                                           |
| needed to use the  | MEPDG to design r      | ated flexible payements       | crization of mixes used in virginia is |                                                                           |
| needed to use the  | WIEN DO to design in   | le w und rendonna             | area nexible pavements.                |                                                                           |
| The primary ol     | ojective of this proje | ect was to perform            | n a full hot-mix asphalt (HMA          | A) characterization in accordance with the                                |
| procedure establis | shed by the proposed   | MEPDG to sup                  | nort its implementation in Vi          | ginia This objective was achieved by                                      |

procedure established by the proposed MEPDG to support its implementation in Virginia. This objective was achieved by testing a sample of surface, intermediate, and base mixes. The project examined the dynamic modulus, the main HMA material property required by the MEPDG, as well as creep compliance and tensile strength, which are needed to predict thermal cracking. In addition, resilient modulus tests, which are not required by the MEPDG, were also performed on the different mixes to investigate possible correlations between this test and the dynamic modulus.

Loose samples for 11 mixes (4 base, 4 intermediate, and 3 surface mixes) were collected from different plants across Virginia. Representative samples underwent testing for maximum theoretical specific gravity, asphalt content using the ignition oven method, and gradation of the reclaimed aggregate. Specimens for the various tests were then prepared using the Superpave gyratory compactor with a target voids in total mix (VTM) of  $7\% \pm 1\%$  (after coring and/or cutting).

The investigation confirmed that the dynamic modulus test is an effective test for determining the mechanical behavior of HMA at different temperatures and loading frequencies. The test results showed that the dynamic modulus is sensitive to the mix constituents (aggregate type, asphalt content, percentage of recycled asphalt pavement, etc.) and that even mixes of the same type (SM-9.5A, IM-19.0A, and BM-25.0) had different measured dynamic modulus values because they had different constituents. The level 2 dynamic modulus prediction equation reasonably estimated the measured dynamic modulus; however, it did not capture some of the differences between the mixes captured by the measured data. Unfortunately, the indirect tension strength and creep tests needed for the low-temperature cracking model did not produce very repeatable results; this could be due to the type of extension eters.

Based on the results of the investigation, it is recommended that the Virginia Department of Transportation use level 1 input data to characterize the dynamic modulus of the HMA for projects of significant impact. The dynamic modulus test is easy to perform and gives a full characterization of the asphalt mixture. Level 2 data (based on the default prediction equation) could be used for smaller projects pending further investigation of the revised prediction equation incorporated in the new MEPDG software/guide. In addition, a sensitivity analysis is recommended to quantify the effect of changing the dynamic modulus on the asphalt pavement design. Since low-temperature cracking is not a widespread problem in Virginia, use of level 2 or 3 indirect tensile creep and strength data is recommended at this stage.

#### FINAL CONTRACT REPORT

## ASPHALT MATERIALS CHARACTERIZATION IN SUPPORT OF IMPLEMENTATION OF THE PROPOSED MECHANISTIC-EMPIRICAL PAVEMENT DESIGN GUIDE

Gerardo W. Flintsch, Ph.D., P.E. Director, Center for Sustainable Transportation Infrastructure, VTTI, Virginia Tech

> Amara Loulizi, Ph.D., P.E. Research Scientist, CSTI, VTTI, Virginia Tech

Stacey D. Diefenderfer Research Scientist, Virginia Transportation Research Council

Khaled A. Galal, Ph.D. Research Scientist, Virginia Transportation Research Council

Brian K. Diefenderfer, Ph.D. Research Scientist, Virginia Transportation Research Council

*Project Manager* Stacey D. Diefenderfer, Virginia Transportation Research Council

Contract Research Sponsored by the Virginia Transportation Research Council

Virginia Transportation Research Council (A partnership of the Virginia Department of Transportation and the University of Virginia since 1948)

Charlottesville, Virginia

January 2007 VTRC 07-CR10

## NOTICE

The project that is the subject of this report was done under contract for the Virginia Department of Transportation, Virginia Transportation Research Council. The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Virginia Department of Transportation, the Commonwealth Transportation Board, or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

Each contract report is peer reviewed and accepted for publication by Research Council staff with expertise in related technical areas. Final editing and proofreading of the report are performed by the contractor.

Copyright 2007 by the Commonwealth of Virginia. All rights reserved.

#### ABSTRACT

The proposed Mechanistic-Empirical Pavement Design Guide (MEPDG) procedure is an improved methodology for pavement design and evaluation of paving materials. Since this new procedure depends heavily on the characterization of the fundamental engineering properties of paving materials, a thorough material characterization of mixes used in Virginia is needed to use the MEPDG to design new and rehabilitated flexible pavements.

The primary objective of this project was to perform a full hot-mix asphalt (HMA) characterization in accordance with the procedure established by the proposed MEPDG to support its implementation in Virginia. This objective was achieved by testing a sample of surface, intermediate, and base mixes. The project examined the dynamic modulus, the main HMA material property required by the MEPDG, as well as creep compliance and tensile strength, which are needed to predict thermal cracking. In addition, resilient modulus tests, which are not required by the MEPDG, were also performed on the different mixes to investigate possible correlations between this test and the dynamic modulus.

Loose samples for 11 mixes (4 base, 4 intermediate, and 3 surface mixes) were collected from different plants across Virginia. Representative samples underwent testing for maximum theoretical specific gravity, asphalt content using the ignition oven method, and gradation of the reclaimed aggregate. Specimens for the various tests were then prepared using the Superpave gyratory compactor with a target voids in total mix (VTM) of  $7\% \pm 1\%$  (after coring and/or cutting).

The investigation confirmed that the dynamic modulus test is an effective test for determining the mechanical behavior of HMA at different temperatures and loading frequencies. The test results showed that the dynamic modulus is sensitive to the mix constituents (aggregate type, asphalt content, percentage of recycled asphalt pavement, etc.) and that even mixes of the same type (SM-9.5A, IM-19.0A, and BM-25.0) had different measured dynamic modulus values because they had different constituents. The level 2 dynamic modulus prediction equation reasonably estimated the measured dynamic modulus; however, it did not capture some of the differences between the mixes captured by the measured data. Unfortunately, the indirect tension strength and creep tests needed for the low-temperature cracking model did not produce very repeatable results; this could be due to the type of extensioneters used for the test.

Based on the results of the investigation, it is recommended that the Virginia Department of Transportation use level 1 input data to characterize the dynamic modulus of the HMA for projects of significant impact. The dynamic modulus test is easy to perform and gives a full characterization of the asphalt mixture. Level 2 data (based on the default prediction equation) could be used for smaller projects pending further investigation of the revised prediction equation incorporated in the new MEPDG software/guide. In addition, a sensitivity analysis is recommended to quantify the effect of changing the dynamic modulus on the asphalt pavement design. Since low-temperature cracking is not a widespread problem in Virginia, use of level 2 or 3 indirect tensile creep and strength data is recommended at this stage. Future research projects can be recommended based on the needs of the Virginia Department of Transportation to evaluate the effect of low-temperature cracking on performance of asphalt pavements.

#### FINAL CONTRACT REPORT

## ASPHALT MATERIALS CHARACTERIZATION IN SUPPORT OF IMPLEMENTATION OF THE PROPOSED MECHANISTIC-EMPIRICAL PAVEMENT DESIGN GUIDE

Gerardo W. Flintsch, Ph.D., P.E. Director, Center for Sustainable Transportation Infrastructure, VTTI, Virginia Tech

> Amara Loulizi, Ph.D., P.E. Research Scientist, CSTI, VTTI, Virginia Tech

Stacey D. Diefenderfer Research Scientist, Virginia Transportation Research Council

Khaled A. Galal, Ph.D. Research Scientist, Virginia Transportation Research Council

Brian K. Diefenderfer, Ph.D. Research Scientist, Virginia Transportation Research Council

## **INTRODUCTION**

The proposed Mechanistic-Empirical Pavement Design Guide (MEPDG) procedure, introduced in NCHRP Project 1-37A (NCHRP, 2004), is an improved methodology for pavement design and evaluation of paving materials. Unlike currently used empirical pavement design methods, this new procedure depends heavily on the characterization of the fundamental engineering properties of paving materials. For asphaltic materials, the term *material characterization* can be defined as the measurements and the analysis of the asphaltic material response to load and deformation at different loading rates or temperatures (i.e., environmental conditions). Implementation of the MEPDG in Virginia is expected to improve the efficiency of pavement designs, provide better capability for prediction of pavement lifetime maintenance needs, and strengthen Virginia's position as a leading state in emerging technology.

Use of the proposed MEPDG for the design of asphalt pavements requires a comprehensive characterization of the materials typically used in Virginia pavements. The MEPDG identifies and incorporates several fundamental properties and tests for asphalt mixtures and binders. The data required for asphalt mixtures include indirect tensile strength, creep compliance, and dynamic modulus. The required asphalt binder properties include the complex shear modulus and associated phase angle. General asphalt mixture properties include asphalt binder content, aggregate gradation, and volumetric properties. These material characteristics are also necessary to calibrate the proposed MEPDG for use with materials used in Virginia pavements. Accurate knowledge of these characteristics and calibration of the design guide will improve the efficiency and reliability of future asphalt pavement designs for new construction and rehabilitation in Virginia.

#### PURPOSE AND SCOPE

A thorough material characterization of hot-mix asphalt (HMA) mixes used in Virginia is needed to use the proposed MEPDG to design new and rehabilitated flexible pavements. These tests would provide level 1 input for the HMA material properties as required for the highestpriority flexible pavement designs. In addition, even for the level 2 input, the equations relating volumetric properties to the required mechanical properties need to be validated and possibly calibrated for the mixes used in Virginia. Level 3 designs require catalogued properties of the typical mixes used in Virginia, which are set as default values for the pavement designer.

Therefore, the primary objective of this project was to perform a full HMA material characterization in accordance with the procedure established by the proposed MEPDG in order to support the implementation of mechanistic-empirical pavement design procedures in Virginia. This objective was achieved by testing a sample of HMA used in Virginia as surface, intermediate, and base mixes. Dynamic modulus and creep compliance temperatures were measured at the recommended temperatures and frequencies for 11 typical mixes.

In addition, resilient modulus tests, which are not required by the MEPDG, were also performed on the different mixes in order to investigate possible correlations between this test and the dynamic modulus. The resilient modulus is used with the AASHTO 1993 pavement design method currently used in VDOT and for pavement analysis using multilayer linear elastic analysis software (e.g., ELSYM5) to calculate stresses and strains in the pavement.

#### **METHODS AND MATERIALS**

The main HMA material property required by the MEPDG is the dynamic modulus. Additional properties, namely the creep compliance and the tensile strength, are needed to predict thermal cracking. The dynamic modulus test was performed in accordance with AASHTO TP62-03. Five testing temperatures were used: 10°F, 30°F, 70°F, 100°F, and 130°F. Six testing frequencies, 0.1 Hz, 0.5 Hz, 1 Hz, 5 Hz, 10 Hz, and 25 Hz, were used at each temperature. Three specimens per mix were tested. Each specimen was first tested at the lowest temperature with all six frequencies from highest to lowest. The procedure was then repeated at consecutively higher temperatures until the sequence had been completed for all specimens. The creep test was performed in accordance with AASHTO T322-03. The three standard testing temperatures were used:  $-4^{\circ}$ F, 14°F, and 32°F. At each temperature, a static load was applied for 100 seconds. Two specimens per mix were tested. The same specimens were then used to determine the mix tensile strength at 14°F. The resilient modulus test was performed in accordance with ASTM D4123 at the following three testing temperatures: 41°F, 77°F, and 104°F. Two specimens per mix were tested.

This study used 11 mixes. In total, 33 specimens were tested for dynamic modulus, 22 for creep compliance and tensile strength, and 22 for resilient modulus. The following section describes the 11 mixes and discusses the procedures used for preparing the specimens.

#### **Specimen Preparation and Volumetric Analysis**

Loose samples for 11 mixes were collected from different plants across the Commonwealth of Virginia. The mixes consisted of 4 base mixes (BM-25.0), 4 intermediate mixes (IM-19.0A), and 3 surface mixes (SM-9.5A). The mixes were labeled depending on their mix type (BM, IM, and SM) and were numbered randomly. The labels for the different mixes and the plants where they were collected are presented in Table 1. The job-mix formulas (JMF) for all the mixes are presented in Tables A1 to A3 in Appendix A.

| Mix Type   | Label | Contractor      | Location   |
|------------|-------|-----------------|------------|
|            | SM1   | VA Paving Corp. | Stafford   |
| SM-9.5A    | SM2   | ADAMS           | Rockydale  |
|            | SM3   | Superior Paving | Warrenton  |
|            | IM1   | APAC            | Occoquan   |
| IM 10.0A   | IM2   | Branscome       | Norfolk    |
| IIVI-19.0A | IM3   | Adams           | Lowmoor    |
|            | IM4   | B&S Contracting | Augusta    |
|            | BM1   | VA Paving Corp. | Stafford   |
| BM 25.0    | BM2   | Stuart M. Perry | Winchester |
| DIVI-23.0  | BM3   | Adams           | Blacksburg |
|            | BM4   | Branscome       | Norfolk    |

Table 1. Labels and plant locations of mixes

Once the mixes were collected, representative samples were used to perform the following tests: maximum theoretical specific gravity ( $G_{mm}$ ) in accordance with AASHTO T209, asphalt content using the ignition method, and gradation of the reclaimed aggregate in accordance with AASHTO T27. Each of these tests was performed on four samples. Results of the individual tests are presented in Tables B1 to B11 in Appendix B. Table 2, Table 3, and Table 4 show the average properties for the SM-9.5A, IM-19.0A, and BM-25.0 mixes, respectively. The values that did not pass the acceptance range are shaded in gray. Although some properties were outside of the acceptance range, no mixture failed to the extent that they were removed and replaced.

Table 2. Asphalt content, G<sub>mm</sub>, and aggregate gradation for the SM-9.5A mixesSM1SM2SM3

|                   |         | SM1           |         | SM2           |         | SM3           |
|-------------------|---------|---------------|---------|---------------|---------|---------------|
|                   | Avg.    | JMF           | Avg.    | JMF           | Avg.    | JMF           |
| Asp. Ct. (%)      | 4.93    | $5.3 \pm 0.3$ | 5.91    | $5.9 \pm 0.3$ | 6.32    | $5.6 \pm 0.3$ |
| G <sub>mm</sub>   | 2.630   | 2.626         | 2.648   | 2.618         | 2.596   | 2.599         |
| Gradation         |         |               |         |               |         |               |
| Sieve opening, mm | %       | Acceptance    | %       | Acceptance    | %       | Acceptance    |
| (No.)             | Passing | Range         | Passing | Range         | Passing | Range         |
| 12.5 (1/2)        | 97.4    | 100           | 100.0   | 99-100        | 99.2    | 99-100        |
| 9.5 (3/8)         | 89.9    | 89-97         | 96.3    | 92-100        | 91.4    | 89-97         |
| 4.75 (#4)         | 57.2    | 56-64         | 57.1    | 56-64         | 55.8    | 55-63         |
| 2.36 (#8)         | 37.9    | 36-44         | 37.6    | 37-45         | 39.5    | 36-44         |
| 1.18 (#16)        | 27.9    | -             | 28.1    | -             | 30.0    | -             |
| 0.6 (#30)         | 19.4    | -             | 20.2    | -             | 21.5    | -             |
| 0.3 (#50)         | 10.9    | -             | 12.8    | -             | 13.4    | -             |
| 0.15 (#100)       | 6.8     | -             | 8.5     | -             | 9.1     | -             |
| 0.075 (#200)      | 5.0     | 4-6           | 6.3     | 4.9-6.9       | 6.3     | 4.7-6.7       |

|                               | IN           | И1               | Π            | IM2              |              | M3               | IM4          |                  |  |
|-------------------------------|--------------|------------------|--------------|------------------|--------------|------------------|--------------|------------------|--|
|                               | Avg.         | JMF              | Avg.         | JMF              | Avg.         | JMF              | Avg.         | JMF              |  |
| Asphalt<br>content (%)        | 5.26         | $4.6 \pm 0.3$    | 4.52         | $4.6 \pm 0.3$    | 4.89         | $4.9\pm0.3$      | 5.43         | $5.5 \pm 0.3$    |  |
| G <sub>mm</sub>               | 2.477        | 2.504            | 2.513        | 2.500            | 2.523        | 2.524            | 2.486        | 2.502            |  |
| Gradation                     |              |                  |              |                  |              |                  |              |                  |  |
| Sieve<br>opening,<br>mm (No.) | %<br>Passing | Accept.<br>Range | %<br>Passing | Accept.<br>Range | %<br>Passing | Accept.<br>Range | %<br>Passing | Accept.<br>Range |  |
| 25 (1)                        | 100.0        | 100              | 100.0        | 100              | 100.0        | 100              | 100.0        | 100              |  |
| 19 (3/4)                      | 100.0        | 92-100           | 97.6         | 92-100           | 96.4         | 92-100           | 98.8         | 92-100           |  |
| 12.5 (1/2)                    | 95.8         | 84-92            | 84.6         | 80-88            | 79.8         | 76-84            | 85.3         | 82-90            |  |
| 9.5 (3/8)                     | 87.5         | -                | 73.3         | -                | 69.5         | -                | 75.4         | -                |  |
| 4.75 (#4)                     | 53.0         | -                | 41.5         | -                | 45.6         | -                | 58.5         | -                |  |
| 2.36 (#8)                     | 37.7         | 29-37            | 29.8         | 29-37            | 30.4         | 28-36            | 40.0         | 26-34            |  |
| 1.18 (#16)                    | 29.4         | -                | 24.2         | -                | 21.1         | -                | 30.3         | -                |  |
| 0.6 (#30)                     | 21.8         | -                | 18.1         | -                | 15.4         | -                | 23.4         | -                |  |
| 0.3 (#50)                     | 14.5         | -                | 11.5         | -                | 10.4         | -                | 14.4         | -                |  |
| 0.15 (#100)                   | 9.9          | -                | 6.6          | -                | 7.2          | -                | 8.0          | -                |  |
| 0.075 (#200)                  | 6.6          | 4-6              | 3.8          | 3.4-5.4          | 5.5          | 4-6              | 5.9          | 4-6              |  |

Table 3. Asphalt content, G<sub>mm</sub>, and aggregate gradation for the IM-19.0A mixes

Table 4. Asphalt content,  $G_{mm}$ , and aggregate gradation for BM-25.0 mixes

|                               | BM1          |                  | B            | M2               | B            | M3               | BM4          |                  |  |
|-------------------------------|--------------|------------------|--------------|------------------|--------------|------------------|--------------|------------------|--|
|                               | Avg.         | JMF              | Avg.         | JMF              | Avg.         | JMF              | Avg.         | JMF              |  |
| Asphalt<br>content (%)        | 4.62         | $4.4 \pm 0.3$    | 4.86         | $4.9 \pm 0.3$    | 3.91         | $4.4\pm0.3$      | 4.51         | $4.4 \pm 0.3$    |  |
| G <sub>mm</sub>               | 2.691        | 2.668            | 2.509        | 2.515            | 2.640        | 2.605            | 2.516        | 2.525            |  |
| Gradation                     |              |                  |              |                  |              |                  |              |                  |  |
| Sieve<br>opening,<br>mm (No.) | %<br>Passing | Accept.<br>Range | %<br>Passing | Accept.<br>Range | %<br>Passing | Accept.<br>Range | %<br>Passing | Accept.<br>Range |  |
| 37.5 (1.5)                    | 100.0        | 100              | 100.0        | 100              | 100.0        | 100              | 100.0        | 100              |  |
| 25 (1)                        | 99.2         | 92-100           | 84.1         | 90-98            | 97.3         | 90-98            | 100.0        | 92-100           |  |
| 19 (3/4)                      | 94.4         | 82-90            | 73.8         | 73-81            | 87.6         | 82-90            | 95.5         | 81-89            |  |
| 12.5 (1/2)                    | 75.9         | -                | 69.6         | -                | 73.3         | -                | 82.5         | -                |  |
| 9.5 (3/8)                     | 66.0         | -                | 66.6         | -                | 64.8         | -                | 70.6         | I                |  |
| 4.75 (#4)                     | 46.3         | -                | 42.9         | -                | 48.0         | -                | 41.1         | -                |  |
| 2.36 (#8)                     | 31.3         | 26-34            | 26.5         | 25-33            | 24.2         | 25-33            | 30.3         | 33-41            |  |
| 1.18 (#16)                    | 23.0         | -                | 17.0         | -                | 17.1         | -                | 24.7         | -                |  |
| 0.6 (#30)                     | 16.6         | -                | 11.4         | -                | 13.1         | -                | 18.2         | -                |  |
| 0.3 (#50)                     | 10.6         | -                | 8.2          | -                | 8.9          | -                | 11.0         | -                |  |
| 0.15 (#100)                   | 7.4          | -                | 6.5          | -                | 7.1          | -                | 6.2          | -                |  |
| 0.075 (#200)                  | 5.4          | 3-5              | 5.5          | 3.6-5.6          | 6.1          | 4-6              | 3.9          | 3.2-5.2          |  |

Once the  $G_{mm}$ , asphalt content, and aggregate gradation of the mixes were determined, the Superpave gyratory compactor was used to prepare the specimens for testing. A target voids in total mix (VTM) of  $7\% \pm 1\%$  was intended for all the specimens (after coring and/or cutting), which is approximately the air void content of newly constructed pavements in Virginia. Several trial specimens per mix were prepared before achieving the correct mix weight. The prepared gyratory specimen was 6 inches in diameter by 7 inches in height, thus, the number of gyrations was left variable to achieve the specified height of 7 inches. The prepared gyratory specimen was cut to 6 inches in thickness and cored to 4 inches in diameter to get the specimen for dynamic modulus testing.

For the resilient modulus and creep specimens, the ends (top and bottom 0.5 inch) of the gyratory specimen were removed, and then the top and bottom 1.5 inches were cut to obtain two specimens. The final dimensions of the specimens were 6 inches in diameter and 1.5 inches in thickness. Figure 1 shows a typical specimen for dynamic modulus and for the resilient modulus or creep tests. The bulk specific gravity ( $G_{mb}$ ) of all produced specimens was measured using the AASHTO T166 procedure. Table 5 presents the measured  $G_{mb}$  and calculated VTM for all specimens prepared for the dynamic modulus, resilient modulus, and creep tests. The table shows that most prepared specimens met the VTM requirements of  $7\% \pm 1\%$  except for the dynamic modulus specimens for BM4. For this mix, decreasing the weight of mix placed in the gyratory to produce higher voids resulted in samples that broke after extraction from the gyratory machine. The first sample that held together provided a dynamic modulus specimen with a VTM of 5.1% as shown in Table 5. In addition, a few specimens had a VTM slightly above 8.0%.



Figure 1. Typical specimens for (a) dynamic modulus and (b) resilient modulus and creep test

|        | SN               | M               |      |        | Π                | М               |     |        | BM               |                 |     |
|--------|------------------|-----------------|------|--------|------------------|-----------------|-----|--------|------------------|-----------------|-----|
| Dynai  | mic Moduli       | us Speci        | mens |        |                  |                 |     |        |                  |                 |     |
|        | Label            | Gmb             | VTM  |        | Label            | Gmb             | VTM |        | Label            | Gmb             | VTM |
|        | SM1-1            | 2.458           | 6.5  |        | IM1-2            | 2.305           | 6.9 |        | BM1-2            | 2.493           | 7.4 |
| C) (1  | SM1-2            | 2.453           | 6.7  | TN / 1 | IM1-3            | 2.304           | 6.9 | DM     | BM1-3            | 2.518           | 6.4 |
| SMI    | SM1-3            | 2.464           | 6.3  | INII   | IM1-4            | 2.309           | 6.8 | BMI    | BM1-4            | 2.505           | 6.9 |
|        | Avg.             | 2.458           | 6.5  |        | Avg.             | 2.306           | 6.9 |        | Avg.             | 2.505           | 6.9 |
|        | SM2-1            | 2.475           | 6.5  |        | IM2-3            | 2.353           | 6.4 |        | BM2-1            | 2.354           | 6.2 |
| SM2    | SM2-2            | 2.479           | 6.4  | IM2    | IM2-4            | 2.352           | 6.4 | BM2    | BM2-2            | 2.349           | 6.4 |
| 01112  | SM2-3            | 2.477           | 6.5  | 11012  | IM2-5            | 2.347           | 6.6 | DIVIZ  | BM2-3            | 2.353           | 6.2 |
|        | Avg.             | 2.4//           | 6.5  |        | Avg.             | 2.351           | 6.5 |        | Avg.             | 2.352           | 6.3 |
|        | SM3-3            | 2.400           | 7.3  |        | IM3-2<br>IM3-3   | 2.330           | 0.9 |        | BM3-2<br>BM3-3   | 2.462           | 6.6 |
| SM3    | SM3-5            | 2.399           | 7.5  | IM3    | IM3-4            | 2.365           | 63  | BM3    | BM3-4            | 2.457           | 6.0 |
|        | Avg              | 2.402           | 7.5  |        | Avg              | 2.350           | 6.9 |        | Avg              | 2.461           | 6.8 |
|        | 11.8.            |                 | ,    |        | IM4-2            | 2.306           | 7.2 |        | BM4-2            | 2.388           | 5.1 |
|        |                  |                 |      | T) ( 4 | IM4-3            | 2.305           | 7.3 | DMA    | BM4-3            | 2.373           | 5.7 |
|        |                  |                 |      | 1M4    | IM4-4            | 2.308           | 7.2 | BM4    | BM4-4            | 2.366           | 6.0 |
|        |                  |                 |      |        | Avg.             | 2.306           | 7.2 |        | Avg.             | 2.376           | 5.6 |
| Resili | ent Modulı       | is Specir       | nens |        |                  |                 |     |        |                  |                 |     |
|        | Label            | G <sub>mb</sub> | VTM  |        | Label            | G <sub>mb</sub> | VTM |        | Label            | G <sub>mb</sub> | VTM |
|        | SM1-6B           | 2.459           | 6.5  |        | IM1-5A           | 2.288           | 7.6 |        | BM1-5B           | 2.473           | 8.1 |
| C) (1  | SM1-7A           | 2.453           | 6.7  | TN / 1 | IM1-5B           | 2.286           | 7.7 | DM     | BM1-6B           | 2.487           | 7.6 |
| SMI    | SM1-8B           | 2.458           | 6.5  | IMI    | IM1-6B           | 2.286           | 7.7 | BWI    | BM1-7B           | 2.474           | 8.0 |
|        | Avg              | 2.457           | 6.6  |        | Avg              | 2.287           | 77  |        | Avg              | 2.478           | 79  |
|        | SM2-4A           | 2.187           | 6.0  |        | IM2-7A           | 2.207           | 7.5 |        | BM2-4A           | 2.176           | 77  |
|        | SM2 5A           | 2.400           | 6.7  |        | IM2 7R           | 2.320           | 7.3 | -      | BM2 4A           | 2.313           | 7.6 |
| SM2    | SM2-5R           | 2.470           | 67   | IM2    |                  | 2.329           | 7.5 | BM2    | DM2-0A           | 2.319           | 7.0 |
|        | SIVI2-0D         | 2.470           | 0.7  |        | IIVI2-8A         | 2.320           | 7.4 | -      | DIVIZ-0D         | 2.314           | 1.1 |
|        | Avg.             | 2.475           | 0.5  |        | Avg.             | 2.327           | /.4 |        | Avg.             | 2.310           | 7.7 |
|        | SM3-6B           | 2.404           | /.4  |        | IM3-5A           | 2.368           | 6.2 | -      | BM3-5B           | 2.463           | 7.0 |
| SM3    | SM3-7B           | 2.395           | 7.8  | IM3    | IM3-6A           | 2.333           | 7.6 | BM3    | BM3-6A           | 2.453           | 7.1 |
|        | SM3-8A           | 2.395           | 7.8  | _      | IM3-7B           | 2.351           | 6.9 | _      | BM3-7B           | 2.453           | 7.1 |
|        | Avg.             | 2.398           | 7.7  |        | Avg.             | 2.351           | 6.9 |        | Avg.             | 2.456           | 7.1 |
|        |                  |                 |      |        | IM4-5B           | 2.298           | 7.6 |        | BM4-5B           | 2.356           | 6.4 |
|        |                  |                 |      | IM4    | IM4-6B           | 2.292           | 7.8 | BM4    | BM4-6B           | 2.335           | 6.2 |
|        |                  |                 |      | 11117  | IM4-7B           | 2.297           | 7.6 | DMIT   | BM4-7A           | 2.352           | 6.5 |
|        |                  |                 |      |        | Avg.             | 2.296           | 7.7 |        | Avg.             | 2.348           | 6.4 |
| Creep  | Specimens        | 5               |      |        |                  |                 |     |        | •                | 1               |     |
|        | Label            | G <sub>mb</sub> | VTM  |        | Label            | G <sub>mb</sub> | VTM |        | Label            | G <sub>mb</sub> | VTM |
|        | SM1-6A           | 2.436           | 7.4  |        | IM1-6A           | 2.284           | 7.8 |        | BM1-5A           | 2.469           | 8.3 |
| SM1    | SM1-7B           | 2.458           | 6.5  | IM1    | IM1-7A           | 2.271           | 8.3 | BM1    | BM1-6A           | 2.467           | 8.3 |
| 51111  | SMI-8A           | 2.451           | 6.8  | 11/11  | IMI-/B           | 2.277           | 8.1 | Diviti | BMI-/A           | 2.4/0           | 8.2 |
|        | Avg.             | 2.448           | 6.9  |        | Avg.             | 2.277           | 8.1 |        | Avg.             | 2.469           | 8.3 |
|        | SM2-4B<br>SM2-5B | 2.459           | /.1  |        | IM2-6A<br>IM2-6B | 2.317           | /.8 |        | BM2-4B<br>BM2-5A | 2.288           | 8.8 |
| SM2    | SM2-6A           | 2.469           | 6.9  | IM2    | IM2-0B           | 2.320           | 7.7 | BM2    | BM2-5R           | 2.307           | 8.0 |
|        | Avg              | 2.471           | 67   |        | Avg              | 2.320           | 7.7 |        | Avg              | 2 301           | 83  |
|        | SM3-6A           | 2.392           | 7.9  |        | IM3-5B           | 2.376           | 5.9 |        | BM3-5A           | 2.435           | 7.8 |
| GN (2) | SM3-7A           | 2.385           | 8.1  | 11.72  | IM3-6B           | 2.363           | 6.4 | DM     | BM3-6B           | 2.472           | 6.4 |
| 5M3    | SM3-8B           | 2.394           | 7.8  | 11/1.5 | IM3-7A           | 2.343           | 7.2 | BM3    | BM3-7A           | 2.484           | 5.9 |
|        | Avg.             | 2.390           | 7.9  |        | Avg.             | 2.361           | 6.5 |        | Avg.             | 2.464           | 6.7 |
|        |                  |                 |      |        | IM4-5A           | 2.287           | 8.0 |        | BM4-5A           | 2.347           | 6.7 |
|        |                  |                 |      | IM4    | IM4-6A           | 2.282           | 8.2 | BM4    | BM4-6A           | 2.335           | 7.2 |
|        |                  |                 |      |        | IIVI4-/A         | 2.296           | 7.0 | 2      | BM4-/B           | 2.346           | 6./ |
|        |                  |                 |      |        | Avg.             | 2.200           | 7.9 |        | Avg.             | 2.343           | 0.9 |

| Table 5. | G <sub>mb</sub> and | VTM for : | all prepared | specimens |
|----------|---------------------|-----------|--------------|-----------|

#### **RESULTS AND DISCUSSION**

#### **Dynamic Modulus Test**

Table 6 presents all the measured dynamic modulus and phase angle data for all SM1 specimens. Results for all the mixes are presented in Tables C1 to C11 in Appendix C. The tables also present the calculated coefficient of variation (COV) (defined as 100 times the standard deviation divided by the mean) for each testing temperature and frequency. For the dynamic modulus, the minimum and maximum calculated COV were 0.9% and 32.3%, respectively. For the phase angle, the minimum and maximum calculated COV were 0.2% and 30.5%, respectively. In general, the highest COV were obtained at the low temperatures and high frequencies, were the deformation measured are smallest.

| Temp.                                                                  | Freq. | eq. SM1-1 SM1-2 SM1-3 Average |      | e         | CO   | V         |      |           |      |      |      |
|------------------------------------------------------------------------|-------|-------------------------------|------|-----------|------|-----------|------|-----------|------|------|------|
| (°F)                                                                   | (Hz)  | E*                            | δ    | E*        | δ    | E*        | δ    | E*        | δ    | E*   | δ    |
|                                                                        | 25    | 3,835,448                     | 2.2  | 4,688,959 | 2.9  | 4,476,852 | 2.2  | 4,333,753 | 2.4  | 10.3 | 14.9 |
|                                                                        | 10    | 3,751,927                     | 3.3  | 4,106,812 | 3.5  | 4,312,782 | 3.1  | 4,057,174 | 3.3  | 7.0  | 5.7  |
| Temp.<br>(°F)         10         40         70         100         130 | 5     | 3,623,147                     | 3.6  | 4,105,549 | 4.1  | 4,151,776 | 4.5  | 3,960,157 | 4.1  | 7.4  | 6.3  |
| 10                                                                     | 1     | 3,292,053                     | 3.8  | 3,692,480 | 5.4  | 3,795,503 | 6.7  | 3,593,345 | 5.3  | 7.4  | 14.7 |
|                                                                        | 0.5   | 3,155,697                     | 6.6  | 3,396,530 | 5.8  | 3,642,242 | 6.8  | 3,398,156 | 6.4  | 7.2  | 8.2  |
|                                                                        | 0.1   | 2,751,969                     | 7.8  | 3,349,788 | 6.1  | 3,220,936 | 7.5  | 3,107,564 | 7.1  | 10.1 | 10.5 |
|                                                                        | 25    | 2,386,559                     | 9.4  | 2,280,613 | 8.2  | 3,018,213 | 8.6  | 2,561,795 | 8.8  | 15.6 | 3.0  |
|                                                                        | 10    | 2,196,173                     | 10.4 | 2,041,250 | 10.9 | 2,697,734 | 10.7 | 2,311,719 | 10.7 | 14.8 | 1.0  |
| 40                                                                     | 5     | 2,038,852                     | 11.2 | 1,866,631 | 11.4 | 2,509,424 | 9.5  | 2,138,302 | 10.7 | 15.6 | 9.3  |
| 40                                                                     | 1     | 1,662,643                     | 13.0 | 1,483,098 | 13.2 | 2,035,394 | 12.3 | 1,727,045 | 12.8 | 16.3 | 3.3  |
|                                                                        | 0.5   | 1,489,189                     | 15.5 | 1,313,927 | 16.0 | 1,815,690 | 15.6 | 1,539,602 | 15.7 | 16.5 | 1.4  |
|                                                                        | 0.1   | 1,118,509                     | 19.6 | 968,358   | 20.5 | 1,384,811 | 19.4 | 1,157,226 | 19.8 | 18.2 | 2.9  |
|                                                                        | 25    | 1,515,985                     | 17.9 | 1,151,945 | 18.8 | 1,419,005 | 18.2 | 1,362,312 | 18.3 | 13.8 | 1.9  |
| 70                                                                     | 10    | 1,242,674                     | 20.1 | 959,039   | 20.1 | 1,167,187 | 20.2 | 1,122,966 | 20.1 | 13.1 | 0.2  |
|                                                                        | 5     | 1,051,940                     | 21.9 | 820,200   | 21.9 | 1,001,880 | 22.2 | 958,007   | 22.0 | 12.7 | 0.8  |
| 70                                                                     | 1     | 683,430                       | 26.4 | 540,774   | 26.2 | 669,826   | 26.8 | 631,343   | 26.5 | 12.5 | 1.2  |
|                                                                        | 0.5   | 536,882                       | 30.9 | 423,167   | 30.7 | 535,707   | 31.9 | 498,585   | 31.1 | 13.1 | 1.9  |
|                                                                        | 0.1   | 322,957                       | 34.2 | 260,197   | 34.6 | 334,983   | 36.5 | 306,046   | 35.1 | 13.1 | 2.8  |
|                                                                        | 25    | 497,636                       | 31.2 | 376,334   | 32.2 | 490,104   | 31.9 | 454,691   | 31.8 | 14.9 | 0.7  |
|                                                                        | 10    | 375,782                       | 31.9 | 293,682   | 32.4 | 387,783   | 33.3 | 352,416   | 32.5 | 14.5 | 1.4  |
| 100                                                                    | 5     | 292,950                       | 33.2 | 230,763   | 33.3 | 307,610   | 34.3 | 277,108   | 33.6 | 14.7 | 1.4  |
| 100                                                                    | 1     | 160,690                       | 33.6 | 128,241   | 33.4 | 172,165   | 34.9 | 153,699   | 34.0 | 14.8 | 2.1  |
|                                                                        | 0.5   | 119,358                       | 34.9 | 96,715    | 34.6 | 128,156   | 36.7 | 114,743   | 35.4 | 14.1 | 3.0  |
|                                                                        | 0.1   | 74,609                        | 30.3 | 64,260    | 29.4 | 79,842    | 32.5 | 72,904    | 30.7 | 10.9 | 5.1  |
|                                                                        | 25    | 136,638                       | 29.0 | 112,191   | 31.9 | 148,153   | 33.6 | 132,327   | 31.5 | 13.9 | 3.4  |
|                                                                        | 10    | 98,011                        | 27.0 | 83,799    | 28.8 | 103,967   | 30.8 | 95,259    | 28.8 | 10.9 | 4.0  |
| 130                                                                    | 5     | 79,268                        | 24.6 | 67,989    | 26.1 | 82,016    | 28.0 | 76,424    | 26.2 | 9.7  | 4.0  |
| 150                                                                    | 1     | 54,640                        | 18.7 | 47,650    | 19.9 | 53,286    | 21.6 | 51,859    | 20.0 | 7.1  | 4.7  |
|                                                                        | 0.5   | 48,882                        | 17.5 | 43,211    | 18.4 | 46,852    | 19.7 | 46,315    | 18.5 | 6.2  | 3.9  |
|                                                                        | 0.1   | 42,635                        | 14.3 | 38,933    | 14.7 | 39,923    | 15.4 | 40,497    | 14.8 | 4.7  | 2.7  |

Table 6. Measured dynamic modulus,  $E^*$  (psi) and phase angle,  $\delta$  (°) for the mix SM1

Figure 2 shows the average measured dynamic modulus for mix SM1 as a function of frequency for each testing temperature. As expected, under a constant loading frequency, the magnitude of the dynamic modulus decreases with an increase in temperature; under a constant testing temperature, the magnitude of the dynamic modulus increases with an increase in the frequency. Figure 3 shows the measured phase angle results for the same mix.



Figure 2. Dynamic modulus results for mix SM1



Figure 3. Phase angle results for mix SM1

Figure 3 shows that the phase angle decreases as the frequency increases at temperatures of 10°F, 40°F, and 70°F. However, at 100°F and 130°F, the behavior of the phase angle as a function of frequency is more complex. At 100°F, the phase angle seems to increase up to frequencies of 0.5 Hz, and then it starts to decrease as frequency increases. At 130°F, the phase angle increases with an increase in frequency. The complex behavior of the phase angle at higher temperatures or at lower frequencies could be attributed to the predominant effect of the aggregate interlock. This is in agreement with the findings of other researchers and previous testing in Virginia that reported that the elastic behavior of the aggregate dictates the response of the specimen at high temperatures and low frequencies (Flintsch et al., 2006; Clyne et al., 2003). Similar behavior was found for all other tested mixes.

A master curve of the dynamic modulus at the reference temperature of 70°F was constructed for all 11 mixes to complete their characterization. As an example, Figure 4 shows the developed master curve for mix SM1. The method developed by Pellinen and Witczak (Pellinen et al., 2002) was used in this study to construct the master curve. The method consists of fitting a sigmoidal curve to the measured dynamic modulus test data using nonlinear leastsquare regression techniques. The shift factors at each temperature are determined simultaneously with the other coefficients of the sigmoidal function. The function is given by Equation 1:

$$\log \left| E^* \right| = \delta + \frac{\alpha}{1 + e^{\beta - \gamma \log f_r}} \tag{1}$$

where

 $\delta$ , α, β, and  $\gamma$  = sigmoidal function coefficients (fit parameters), and  $f_r$  = reduced frequency, which is given by the following equation:

$$\log f_r = \log f + \log a_T$$

(2)

where

 $a_T$  = shift factor at temperature T.



Figure 4. Measured data and sigmoidal fit for the dynamic modulus of mix SM1

The statistical software package SAS was used for the nonlinear regression analysis. Table 7 shows all the obtained sigmoidal function parameters and shift factors for all the mixes investigated. The parameters shown in Table 7 were used to construct and plot the master curves for all mixes in the frequency range of  $10^{-5}$  Hz to  $10^{5}$  Hz. Figure 5 shows the developed master curves for all SM-9.5A mixes. From this plot, it is clear that mix SM3 exhibits the lowest dynamic modulus values at all frequencies. This can probably be explained by this mix having the highest asphalt content (6.3% as compared to 4.9% for mix SM1 and 5.9% for mix SM2) and on average 1% more voids than the other two mixes (see Table 5).

| Mix | δ       | α       | β        | γ       | $log(a_{10})$ | $log(a_{40})$ | log(a <sub>70</sub> ) | log(a100) | log(a <sub>130</sub> ) |
|-----|---------|---------|----------|---------|---------------|---------------|-----------------------|-----------|------------------------|
| SM1 | 4.23182 | 2.40375 | -0.61155 | 0.5469  | 5.10729       | 1.86113       | 0                     | -1.86687  | -3.5458                |
| SM2 | 4.24358 | 2.34206 | -0.52756 | 0.58509 | 4.60873       | 2.11614       | 0                     | -1.82198  | -3.55407               |
| SM3 | 3.96225 | 2.6038  | -0.34476 | 0.5124  | 4.602         | 2.01282       | 0                     | -1.895    | -3.47021               |
| IM1 | 3.97617 | 2.59338 | -0.89432 | 0.52568 | 4.55627       | 2.16329       | 0                     | -1.77346  | -3.38386               |
| IM2 | 4.1861  | 2.29254 | -0.72547 | 0.57337 | 3.9556        | 2.03623       | 0                     | -1.77381  | -3.36705               |
| IM3 | 4.24285 | 2.41566 | -0.7367  | 0.54358 | 4.99791       | 2.30204       | 0                     | -1.90961  | -3.55711               |
| IM4 | 4.25741 | 2.28306 | -0.59524 | 0.63026 | 4.19403       | 2.34806       | 0                     | -1.899    | -3.49271               |
| BM1 | 4.10766 | 2.54327 | -0.73887 | 0.49758 | 5.44215       | 2.03195       | 0                     | -1.93304  | -3.51238               |
| BM2 | 4.4979  | 2.2097  | 0.0689   | 0.55623 | 5.15319       | 2.20943       | 0                     | -1.85075  | -3.44955               |
| BM3 | 4.32085 | 2.33782 | -1.14008 | 0.58795 | 4.9248        | 1.83275       | 0                     | -1.99614  | -3.72051               |
| BM4 | 4.07489 | 2.57073 | -0.6343  | 0.51438 | 4.70522       | 2.18674       | 0                     | -1.85243  | -3.43843               |

Table 7. Parameters of the measured dynamic modulus master curve for all mixes



Figure 5. Dynamic modulus master curves for all SM-9.5A mixes

Figure 6 shows the developed master curves for all IM-19.0A mixes. This figure shows that all the investigated IM mixes have similar dynamic modulus values at all frequencies, with mix IM3 having slightly higher values than the others.



Figure 6. Dynamic modulus master curves for all IM-19.0A mixes

For the BM-25.0 mixes (Figure 7), mix BM3 exhibits the highest dynamic modulus values at all frequencies while mix BM2 has the lowest dynamic modulus values at all frequencies. Mix BM3 has the lowest asphalt content (3.9%) while mix BM2 has the highest asphalt content (4.9%).



Figure 7. Dynamic modulus master curves for all BM-25.0 mixes

In addition, even though the JMF for mix BM2 reported the use the same binder than in the other BM mixes, the handling of the mix gave the impression that a different binder was used during production. The appearance of BM2 straight out of the box showed that the binder had concentrated in the bottom and had created what appeared to be splash marks on the box from where the material had been sampled. The mix was hard to compact, and after compaction the specimen remained spongy for a couple of hours with some small particles actually falling from the specimen. This abnormal behavior could also have been due to the absence of RAP in this mix.

Figure 8(a) compares the dynamic modulus master curves for all the mixes. Even though it is hard to distinguish between the lines, the graph shows that the BM3 mix has the highest dynamic modulus values at all frequencies while mix SM3 has the lowest dynamic modulus values at all frequencies. This indicates that the dynamic modulus test is sensitive to variation in the mix properties. However, if the mixes that did not meet the job-mix formula requirements are excluded from the plot, as shown in Figure 8(b), the master curves are much closer to each other. Furthermore, the average master curves for all the mixes that met the job-mix formula almost overlap as shown in Figure 8(c).

Once the dynamic modulus master curve was established for all mixes based on the measured values, the Witczak prediction equation (Equation 3) was used to generate the dynamic modulus master curves for the mixes. Witczak prediction equation is as follows:

$$\log E^{*} = 3.750063 + 0.02932\rho_{200} - 0.001767(\rho_{200})^{2} - 0.058097V_{a} - 0.802208 \left(\frac{V_{beff}}{V_{beff} + V_{a}}\right) + \frac{3.871977 - 0.0021\rho_{4} + 0.003958\rho_{38} - 0.000017(\rho_{38})^{2} + 0.005470\rho_{34}}{1 + e^{-0.603313 - 0.313351\log(f) - 0.393532\log(\eta)}}$$
(3)

where

 $E^* = \text{dynamic modulus, psi,}$   $\rho_{200} = \text{percentage passing the #200 sieve,}$   $\rho_4 = \text{cumulative percentage retained on the #4 sieve,}$   $\rho_{34} = \text{cumulative percentage retained on the #3/4 sieve,}$   $\rho_{38} = \text{cumulative percentage retained on the #3/8 sieve,}$  f = frequency in Hz,  $V_{\text{beff}} = \text{effective bitumen content, percentage by volume,}$   $V_a = \text{air void content, and}$  $\eta = \text{bitumen viscosity, 10^6 Poise.}$ 

The bitumen viscosity varies with temperature according to Equation 4:

$$\log(\log(\eta)) = A + VTS \log(T_R)$$
(4)

where

 $\eta$  = binder viscosity expressed in cP, T<sub>R</sub> = temperature in degree Rankine, and A and VTS = regression parameters.





(c)

Figure 8. Dynamic modulus master curves for (a) All mixes; (b) Excluding those that did not meet binder content specifications; and (c) Averages for those mixes meeting specifications

For this investigation, the default values suggested by the proposed MEPDG for a PG64-22 binder were used for all mixes. These default values are 10.98 for A and -3.68 for VTS. The sigmoidal function parameters and the shift factors were then determined for all the mixes and are presented in Table 8. The shift factors and the  $\beta$  and  $\gamma$  parameters are the same for all the mixes because the same values for A and VTS were used for all the mixes. This is a limitation since the master curve equation is sensitive to these parameters. It is recommended that these values be determined for each mix in future work rather than using the default values.

| Mix | δ       | α       | β        | γ       | log(a <sub>10</sub> ) | $log(a_{40})$ | log(a <sub>70</sub> ) | log(a <sub>100</sub> ) | $log(a_{130})$ |
|-----|---------|---------|----------|---------|-----------------------|---------------|-----------------------|------------------------|----------------|
| SM1 | 2.83869 | 3.81814 | -0.99969 | 0.31361 | 4.29643               | 2.70454       | 0                     | -2.07415               | -3.68771       |
| SM2 | 2.83284 | 3.79412 | -0.99969 | 0.31361 | 4.29643               | 2.70454       | 0                     | -2.07415               | -3.68771       |
| SM3 | 2.77352 | 3.80975 | -0.99969 | 0.31361 | 4.29643               | 2.70454       | 0                     | -2.07415               | -3.68771       |
| IM1 | 2.8342  | 3.8179  | -0.99969 | 0.31361 | 4.29643               | 2.70454       | 0                     | -2.07415               | -3.68771       |
| IM2 | 2.81245 | 3.8536  | -0.99969 | 0.31361 | 4.29643               | 2.70454       | 0                     | -2.07415               | -3.68771       |
| IM3 | 2.81465 | 3.8801  | -0.99969 | 0.31361 | 4.29643               | 2.70454       | 0                     | -2.07415               | -3.68771       |
| IM4 | 2.82705 | 3.87624 | -0.99969 | 0.31361 | 4.29643               | 2.70454       | 0                     | -2.07415               | -3.68771       |
| BM1 | 2.80894 | 3.90252 | -0.99969 | 0.31361 | 4.29643               | 2.70454       | 0                     | -2.07415               | -3.68771       |
| BM2 | 2.88335 | 4.00631 | -0.99969 | 0.31361 | 4.29643               | 2.70454       | 0                     | -2.07415               | -3.68771       |
| BM3 | 2.87954 | 3.9466  | -0.99969 | 0.31361 | 4.29643               | 2.70454       | 0                     | -2.07415               | -3.68771       |
| BM4 | 2.83202 | 3.87235 | -0.99969 | 0.31361 | 4.29643               | 2.70454       | 0                     | -2.07415               | -3.68771       |

Table 8. Parameters of the predicted dynamic modulus master curve for all mixes

Figure 9 compares the measured and predicted master curves for mix SM1. For this particular mix, the Witczak prediction equation underestimates the dynamic modulus at all frequencies; as shown by Figure 10, the ratio of the predicted to measured dynamic modulus varies between 0.5 and 0.9. This ratio varies from mix to mix. Table 9 presents the minimum and maximum values for this ratio for each mix. Since the predicted and measure values are close, level 2 input may be used with a reasonable degree of reliability.



Figure 9. Measured and predicted dynamic modulus master curves for mix SM1



Figure 10. Ratio of predicted to measured dynamic modulus for mix SM1

| Fable 9. Minimum and maximum values for the ratio of the p | redicted to measured d | ynamic modulus |
|------------------------------------------------------------|------------------------|----------------|
|------------------------------------------------------------|------------------------|----------------|

| Ratio | SM1  | SM2  | SM3  | IM1  | IM2  | IM3  | IM4  | BM1  | BM2  | BM3  | BM4  |
|-------|------|------|------|------|------|------|------|------|------|------|------|
| Min.  | 0.54 | 0.58 | 0.75 | 0.60 | 0.60 | 0.48 | 0.64 | 0.54 | 0.52 | 0.45 | 0.68 |
| Max.  | 0.90 | 1.07 | 1.56 | 0.90 | 1.01 | 0.75 | 1.24 | 0.80 | 1.90 | 0.84 | 1.05 |

Figure 11 shows the predicted dynamic modulus master curves for the three SM-9.5A mixes. The differences in the predicted dynamic modulus values between the three mixes (SM1, SM2, and SM3) are not as significant as the measured differences (see Figure 5). The same trend was found for the IM-19.0A and BM-25.0 mixes as shown in Figure 12 and Figure 13.



Figure 11. Predicted dynamic modulus master curves for SM-9.5A mixes







Figure 13. Predicted dynamic modulus master curves for BM-25.0 mixes

The predicted master curves show some differences between the various mixes. However, these are not as marked as in the case of the measured master curves test. This may be due to the use of default binder properties (A and VTS) as previously discussed.

#### **Creep Test**

The creep test results were used only in the low-temperature cracking model. In this project a master curve at a reference temperature of 32°F was determined for each tested specimen, and a power model was fit to the data to determine the slope parameter, m, which is required to compute several fracture (crack propagation) parameters in the fracture model of the MEPDG. The power model is defined by the following equation:

$$\mathbf{D}(\mathbf{t}_{\mathrm{r}}) = \mathbf{D}_{0} + \mathbf{D}_{1}\mathbf{t}_{\mathrm{r}}^{\mathrm{m}} \tag{4}$$

where

 $D(t_r)$  = the creep compliance at the reduced time  $t_r$  and  $D_0$ ,  $D_1$ , and m = the power model parameters.

Figure 14 shows the developed master curve and its power model fit for specimen BM1-5A. It is important to note that several difficulties were encountered during the creep test. The data were not repeatable between specimens of the same mix, as can be seen in the obtained m values shown in Table 10. These problems are suspected to be due to the effect of the very low test temperature on the type of extensometers used. It is notable that five extensometers were damaged during the low-temperature creep tests. More problems were also encountered with mix BM2 as only one specimen could be tested. The other two prepared specimens broke during the testing.



Figure 14. Creep compliance master curve and power model fit for specimen BM1-5A

| Mix | Label  | m-value  | Mix | Label  | m-value  | Mix        | Label  | m-value  |
|-----|--------|----------|-----|--------|----------|------------|--------|----------|
|     | SM1-6A | 0.45566  |     | IM1-6A | 0.37085  |            | BM1-5A | 0.37065  |
| SM1 | SM1-7B | 0.19337  | IM1 | IM1-7A | 0.43889  | BM1        | BM1-7A | 0.33526  |
|     | Avg.   | 0.324515 |     | Avg.   | 0.40487  |            | Avg.   | 0.352955 |
|     | SM2-6A | 0.36777  | IM2 | IM2-6A | 0.34614  |            | BM2-5B | 0.46935  |
| SM2 | SM2-4B | 0.52053  |     | IM2-6B | 0.29375  | BM2<br>BM3 |        |          |
|     | Avg.   | 0.44415  |     | Avg.   | 0.319945 |            | Avg.   | 0.46935  |
|     | SM3-7A | 0.7344   |     | IM3-6B | 0.19798  |            | BM3-5A | 0.37385  |
| SM3 | SM3-8B | 0.40476  | IM3 | IM3-7A | 0.34905  |            | BM3-6B | 0.18151  |
|     | Avg.   | 0.56958  |     | Avg.   | 0.273515 |            | Avg.   | 0.27768  |
|     |        |          |     | IM4-5A | 0.35881  |            | BM4-5A | 0.21     |
|     |        |          | IM4 | IM4-6A | 0.30452  | BM4        | BM4-6A | 0.20983  |
|     |        |          |     | Avg.   | 0.331665 |            | Avg.   | 0.209915 |

Table 10. m-parameter for all tested specimens

## **Indirect Tensile Strength Test**

The IDT strength at 14°F is also used in the low-temperature cracking model. The IDT tests for this investigation were conducted in the same specimens used for the creep test. Table 11 presents the results for all tested specimens.

| Mix | Label   | Strength | Mix | Label   | Strength | Mix        | Label   | Strength |
|-----|---------|----------|-----|---------|----------|------------|---------|----------|
|     | SM1-6A  | 475      |     | IM1-6A  | 420      | BM1        | BM1-5A  | 470      |
| SM1 | SM1-7B  | 499      | IM1 | IM1-7B  | 404      |            | BM1-7A  | 392      |
|     | Average | 487      |     | Average | 412      |            | Average | 431      |
|     | SM2-4B  | 477      |     | IM2-6A  | 384      |            | BM2-5B  | 354      |
| SM2 | SM2-5B  | 579      | IM2 | IM2-8B  | 424      | BM2<br>BM3 |         |          |
|     | Average | 528      |     | Average | 404      |            | Average | 354      |
|     | SM3-6A  | 409      |     | IM3-6B  | 472      |            | BM3-5A  | 479      |
| SM3 | SM3-7A  | 387      | IM3 | IM3-7A  | 463      |            | BM2-6B  | 479      |
|     | Average | 398      |     | Average | 467      |            | Average | 479      |
|     |         |          |     | IM4-6A  | 397      |            | BM4-5A  | 415      |
|     |         |          | IM4 | IM4-7A  | 491      | BM4        | BM4-7B  | 367      |
|     |         |          |     | Average | 444      |            | Average | 393      |

Table 11. IDT strength results for all the mixes (ksi)

#### **Resilient Modulus Test**

The resilient modulus tests were performed to investigate possible correlations with the dynamic modulus test. Table 12 presents all the measured resilient modulus values for all the mixes at the testing temperatures of 41°F, 77°F, and 104°F. Some of the specimens for the two weak mixes, SM3 and BM2, could not be tested because the specimens could not hold the applied load and broke before the final cycle of the test was achieved (as indicated by "N/A" in the table). It is recommended that the load applied be adjusted based on the results of the IDT strength test for future testing.

| M:    | Min Lobel Temperature (°F) |       | Mix Labol |        | Temperature (°F) |         |       | Min | Labal  | Temperature (°F) |         |       |     |     |
|-------|----------------------------|-------|-----------|--------|------------------|---------|-------|-----|--------|------------------|---------|-------|-----|-----|
| IVIIX | Laber                      | 41    | 77        | 104    | IVIIX            | Laber   | 41    | 77  | 104    | IVIIX            | Laber   | 41    | 77  | 104 |
|       | SM1-6B                     | 1,125 | 401       | 142    |                  | IM1-5B  | 1,235 | 448 | 229    |                  | BM1-7B  | 1,523 | 592 | 318 |
| SM1   | SM1-7A                     | 1,107 | 424       | 154    | IM1              | IM1-5A  | 1,231 | 420 | 173    | BM1              | BM1-5B  | 1,502 | 451 | 232 |
|       | Average                    | 1,116 | 412       | 148    |                  | Average | 1,233 | 434 | 201    |                  | Average | 1,513 | 522 | 275 |
|       | SM2-5A                     | 1,186 | 461       | 170    |                  | IM2-7B  | 995   | 345 | 163    |                  | BM2-6A  | 1,401 | 354 | N/A |
| SM2   | SM2-4A                     | 1,203 | 449       | 206    | IM2              | IM2-7A  | 944   | 327 | 126    | BM2              | BM2-4A  | 870   | N/A | N/A |
|       | Average                    | 1,195 | 455       | 188    |                  | Average | 969   | 336 | 145    |                  | Average | 1,135 | 354 | N/A |
|       | SM3-8A                     | 914   | 329       | N/A    |                  | IM3-5A  | 1,765 | 762 | 293    |                  | BM3-7B  | 1,843 | 654 | 272 |
| SM3   | SM3-6B                     | 851   | 255       | 87     | IM3              | IM3-6A  | 1,474 | 593 | 363    | BM3              | BM3-6A  | 1,693 | 656 | 290 |
|       | Average                    | 883   | 292       | 87     |                  | Average | 1,619 | 677 | 328    |                  | Average | 1,768 | 655 | 281 |
|       |                            |       |           |        |                  | IM4-7B  | 1,270 | 531 | 143    |                  | BM4-7A  | 866   | 370 | 149 |
|       |                            |       | IM4       | IM4-6B | 1,031            | 397     | 144   | BM4 | BM4-5B | 960              | 365     | 154   |     |     |
|       |                            |       |           |        |                  | Average | 1,151 |     | 464    | 144              | Average | 913   | 368 | 152 |

Table 12. Resilient modulus values for all mixes (ksi)

Figure 15, Figure 16, and Figure 17 show the variation of the resilient modulus values with temperature for the SM-9.5A mixes, IM-19.0A mixes, and BM-25.0 mixes, respectively. As expected, the resilient modulus decreases with an increase in temperature. Furthermore, the relative values for the various mixes follow a similar trend to that observed for the dynamic modulus tests. Mix SM3 has the lowest resilient modulus values at all temperatures for the SM-9.5A mixes. Mix IM3 has the highest resilient modulus values among the IM-19.0A mixes. Mix BM3 has the highest resilient modulus values at all temperatures among the BM-25.0 mixes. All these results are consistent with the behavior observed for the dynamic modulus tests.

To investigate whether there is any correlation between the dynamic modulus and the resilient modulus , the dynamic modulus values at temperatures of 41°F, 77°F, and 104°F at a frequency of 1.6 Hz (frequency that simulates the 0.1-second loading time used in the resilient modulus test) were needed. For that purpose, the shift factors at these temperatures were first determined, then the reduced frequencies were calculated using Equation 2, and finally the regressed sigmoidal equation for the master curve was used to calculate the corresponding dynamic modulus value.



Figure 15. Resilient modulus versus temperature for the SM-9.5A mixes



Figure 16. Resilient modulus versus temperature for the IM-19.0A mixes



Figure 17. Resilient modulus versus temperature for the BM-25.0 mixes

Figure 18 shows the resilient modulus versus the dynamic modulus for all mixes. This figure shows that at low temperatures (high modulus values), the dynamic modulus is larger than the resilient modulus values, while at high temperatures (low modulus values), the values are closer to each other. The plots suggest that the relationship may not be linear and could possibly be mix dependent.



Figure 18. Resilient modulus versus dynamic modulus for all mixes

To determine if there was a clear trend with temperature, the ratio of the dynamic modulus to the resilient modulus for all mixes was determined at all temperatures. Table 13 summarizes the values of this ratio. On average, the dynamic modulus value is 1.62 times the resilient modulus value at 41°F, 1.12 times the resilient modulus value at 77°F, and 0.88 times the resilient modulus value at 104°F. Furthermore, the ratio appears to be mix dependent.

These results suggest that if the resilient modulus values are used at low temperatures, the prediction of the low-temperature cracking may be underestimated; if the resilient modulus values are used at high temperatures, the rutting prediction may also be underestimated.

| Miy     | Temperature (°F) |      |      |  |  |  |  |
|---------|------------------|------|------|--|--|--|--|
| IVIIX   | 41               | 77   | 104  |  |  |  |  |
| SM1     | 1.80             | 0.90 | 0.65 |  |  |  |  |
| SM2     | 1.53             | 0.78 | 0.46 |  |  |  |  |
| SM3     | 1.41             | 0.95 | 1.04 |  |  |  |  |
| IM1     | 1.60             | 1.56 | 1.23 |  |  |  |  |
| IM2     | 1.58             | 1.40 | 1.00 |  |  |  |  |
| IM3     | 1.51             | 0.93 | 0.55 |  |  |  |  |
| IM4     | 1.70             | 1.22 | 1.27 |  |  |  |  |
| BM1     | 1.43             | 0.98 | 0.58 |  |  |  |  |
| BM2     | 1.44             | 0.70 | N/A  |  |  |  |  |
| BM3     | 1.69             | 1.42 | 0.92 |  |  |  |  |
| BM4     | 2.17             | 1.44 | 1.13 |  |  |  |  |
| Average | 1.62             | 1.12 | 0.88 |  |  |  |  |

Table 13. Ratio of dynamic modulus to resilient modulus for all mixes

## FINDINGS

- As expected, under a constant loading frequency, the magnitude of the dynamic modulus decreases with an increase in temperature; under a constant testing temperature, the magnitude of the dynamic modulus increases with an increase in the frequency.
- The phase angle decreases as the frequency increases at testing temperatures of 10°F, 40°F, and 70°F. At 100°F, the phase angle seems to increase up to frequencies of 0.5 Hz, and then it starts to decrease with an increase in frequency. At 130°F, the phase angle increases with an increase in frequency.
- A sigmoidal function can be used for modeling the dynamic modulus data with very good statistical fit.
- Mixes of the same type (SM-9.5A, IM-19.0A, and BM-25.0) had different measured dynamic modulus values because they had different constituents (aggregate type, asphalt content, percentage RAP, etc.).
- The level 2 dynamic modulus prediction (Witczak) equation reasonably estimated the measured dynamic modulus. For all mixes, the ratio of the predicted to the measured

dynamic modulus fell in the range of 0.45 to 1.9. However, this equation did not fully capture differences between the mixes that were clearly shown by the measured data.

- The indirect tensile creep tests needed for the low-temperature cracking model did not produce repeatable results. This is thought to be due to the type of extensometers used in this investigation, which showed low reliability at very low temperatures.
- The measured dynamic moduli were higher than the resilient moduli determined at low temperatures and comparable (but in general lower) at high temperatures.

# CONCLUSIONS

- The dynamic modulus test is a good test to characterize HMA mechanical behavior at different temperatures and loading frequencies. The test results showed that the dynamic modulus is sensitive to the mix constituents. For example, this test method was able to differentiate between similar mixtures at the same nominal maximum aggregate size as in the case of SM-1 and SM-3.
- The default (Witczak) level 2 dynamic modulus prediction equation could be used with the design of low and medium traffic volumes pending future investigation of the revised prediction equation incorporated in the new MEPDG software/guide.
- The creep test and the IDT strength test that are needed to obtain the parameters required for predicting low-temperature cracking may not be repeatable; this could be due to the type of extensometers used for the test.

# RECOMMENDATIONS

- 1. *VDOT's Materials Division should use level 1 analysis for characterizing HMA for pavement design projects of significant impact.* The dynamic modulus test is easy to perform and gives a full characterization of the mix. This could be implemented by developing a catalog of mechanical properties for typical VDOT mixes. The catalog would provide a better characterization of the HMA than just using the default prediction equation.
- 2. VDOT's Materials Division can use level 2 data (based on the default Witczak prediction equation) for projects not requiring high levels of reliabilityAs an alternative to level 1 analysis for projects not requiring high levels of reliability, VDOT's Materials Division can use level 2 analysis based on the default Witczak prediction equation for characterization of HMA.
- 3. *VTRC should perform a sensitivity analysis to see the effect of changing the modulus on the predicted pavement performance.* For example, if the dynamic modulus as predicted by the default equation is used instead of the measured dynamic modulus, how would the predicted pavement performance (fatigue and rutting) change? Of particular interest is the quantification of the effect of various surface mixes on pavement performance and designed layer thicknesses.
- 4. If the MEPDG proves sensitive to the thin layer modulus, VTRC should perform a characterization of special mixes (SMAs, OGFC, and OGDL mixes, etc.) used in Virginia.

#### **COSTS AND BENEFITS ASSESSMENT**

The results of this study directly support implementation efforts currently underway to initiate statewide usage of the proposed MEPDG. The characterization findings provide necessary inputs for the design guide. Use of the design guide is expected to improve the efficiency of asphalt pavement designs and result in more accurate predictions of maintenance and rehabilitation needs over the life of the asphalt pavement. This will allow for more economical scheduling practices to optimize maintenance strategies. Cost savings of these efficiencies cannot be directly calculated at this time, as they must be determined at either the project or network level; such determination is beyond the scope of this study. However, these savings are expected to be significant when applied to the almost 58,000 miles of roadways that are maintained by VDOT considerable mileage of HMA-surfaced pavements that are maintained by VDOT.

## ACKNOWLEDGMENTS

The authors acknowledge the contribution of the following individuals to the successful completion of the project: Troy Deeds, VTRC; Billy Hobbs, Samer Katicha, and Zheng Wu, VTTI; and the project review panel: Bill Maupin, VTRC; Mohamed Elfino, Mourad Bouhajja, and Haroon Shami, VDOT; Richard Schreck, Virginia Asphalt Association; and Lorenzo Casanova, Federal Highway Administration.

#### **REFERENCES**

- Clyne, T.R., Li, X., Marasteanu, M.O., and Skok, E.L. *Dynamic and Resilient Modulus of MN DOT Asphalt Mixtures*. MN/RC-2003-09. Minnesota Department of Transportation, Minneapolis, 2003.
- Federal Highway Administration Design Guide Implementation Team, American Association of State Highways and Transportation Officials. AASHTO TP62-03, Asphalt Material Properties: AC Mixture Inputs—Mix Stiffness, Workshop on Materials Input for Mechanistic-Empirical Pavement Design. Thornburg, VA, 2005.
- Flintsch, G.W., Al-Qadi, I.L., Loulizi, A., and Mokarem, D. Laboratory Tests for Hot-Mix Asphalt Characterization in Virginia. VTRC 05-CR22. Virginia Transportation Research Council, Charlottesville, 2005.
- Pellinen, T.K., and Witczak, M.W. Stress Dependent Master Curve Construction for Dynamic Modulus. *Journal of the Association of Asphalt Paving Technologists*, Vol. 71, 2002, pp. 281-309.

# APPENDIX A JOB-MIX FORMULA FOR ALL MIXES

| Туре                | Percentage (%) | Source                           | Location         |
|---------------------|----------------|----------------------------------|------------------|
| SM1                 |                |                                  |                  |
| #8 Aggregate        | 40             | Vulcan Garrisonville             | Garrisonville    |
| #10 Screening       | 28             | Vulcan Garrisonville             | Garrisonville    |
| Natural Sand        | 12             | Luck Stone New Market Plant      | New Market       |
| RAP                 | 20             | Virginia Paving Co.              |                  |
| PG 64-22            | 5.3            | Citgo                            |                  |
| Kling Beta 2700     | 0.5            | Akzo-Nobel                       | Waco, Texas      |
| SM2                 |                |                                  |                  |
| # 8 Amphible Gneiss | 45             | Rockydale @ Jacks Mtn.           | Glade Hill, VA   |
| #10 Limestone       | 20             | Rockydale Quarry                 | Roanoke, VA      |
| Sand                | 20             | McCarty Sand Works               | Danville, VA     |
| Processed RAP       | 15             | Adams Construction Co.           | Roanoke, VA      |
| PG 64-22            | 5.9            | Associated Asphalt               | Roanoke, VA      |
| Adhere HP+          | 0.5            | Arr-Maz Products                 | Winter Haven, FL |
| SM3                 |                |                                  |                  |
| #8 Aggregate        | 41             | Vulcan Materials, Sanders Quarry |                  |
| #78 Aggregate       | 8              | Vulcan Materials, Sanders Quarry |                  |
| Natural Sand        | 15             | Ennstone Quarry/Morie Quarry     |                  |
| Crushed RAP         | 12             | Superior Paving, Warrenton Plant |                  |
| #10 Screening       | 15             | Vulcan Materials, Sanders Quarry |                  |
| Man. Sand           | 9              | Vulcan Materials, Sanders Quarry |                  |
| PG 64-22            | 5.6            | Citgo                            | Dumfries, VA     |
| Anti-strip          | 0.5            | Morelife 3300                    | Roam/Haas, OH    |

## Table A1. JMF for the SM-9.5A mixes

| Туре                                        | Percentage (%) | Source                   | Location           |
|---------------------------------------------|----------------|--------------------------|--------------------|
| IM1                                         |                |                          |                    |
| #8 Aggregate                                | 21             | Vulcan Materials         | Lorton, VA         |
| #68 Aggregate                               | 30             | Vulcan Materials         | Lorton, VA         |
| Man. Sand                                   | 19             | Vulcan Materials         | Lorton, VA         |
| Natural Sand                                | 10             | Mid Atlantic             | King George, VA    |
| <sup>1</sup> / <sub>2</sub> -inch Recl. RAP | 20             | APAC, Inc.               | Occoquan, VA       |
| PG 64-22                                    | 4.6            | Citgo                    | Dumfries, VA       |
| Adhere HP+                                  | 0.5            | Arr-Maz Products         | Winter Haven, FL   |
| IM2                                         |                |                          |                    |
| #67 Aggregate                               | 35             | Vulcan Materials         |                    |
| #8 Aggregate                                | 25             | Vulcan Materials         |                    |
| Sand                                        | 20             | Vulcan Materials         |                    |
| RAP                                         | 20             | Branscome                |                    |
| PG 64-22                                    | 4.6            | Kock Fuels Inc.          |                    |
| Adhere HP+                                  | 0.3            | Arr-Maz Products         | Winter Haven, FL   |
| IM3                                         |                |                          |                    |
| #68 Limestone                               | 50             | Boxley                   | Rich Patch, VA     |
| #10 Limestone                               | 25             | Boxley                   | Rich Patch, VA     |
| Sand                                        | 5              | Brett Aggregates Inc.    | Stuart Draft, VA   |
| Processed RAP                               | 20             | Adams Construction Co.   | Lowmoore, VA       |
| PG 64-22                                    | 4.9            | Associated Asphalt, Inc. | Roanoke, VA        |
| Adhere HP+                                  | 0.5            | Arr-Maz Products         | Winter Haven, FL   |
| IM4                                         |                |                          |                    |
| #68 Limestone                               | 47             | Luck Stone               | Staunton, VA       |
| #8 Limestone                                | 10             | Luck Stone               | Staunton, VA       |
| #10 Limestone                               | 32             | Luck Stone               | Staunton, VA       |
| Sand                                        | 10             | DM Conner                | Stuarts Drafts, VA |
| Lime                                        | 1              | Greer Lime               | Riverton, WV       |
| PG 64-22                                    | 5.5            | Associated Asphalt       | Roanoke, VA        |

| Туре            | Percentage (%) | rcentage (%) Source      |                  |
|-----------------|----------------|--------------------------|------------------|
| BM1             | 11             |                          |                  |
| #5 Aggregate    | 22             | Vulcan Garrisonville     |                  |
| #68 Aggregate   | 27             | Vulcan Garrisonville     |                  |
| Natural sand    | 10             | Luck Stone               | New Market       |
| #10 screening   | 16             | Vulcan Garrisonville     |                  |
| RAP millings    | 25             | Virginia Paving Co.      |                  |
| PG 64-22        | 4.4            | Citgo                    |                  |
| Kling Beta 2700 | 0.5            | Akzo-Nobel               | Waco , Texas     |
| BM2             |                |                          | ·                |
| #8 Limestone    | 32             | Stuart M. Perry Inc.     | Winchester       |
| #56 Limestone   | 30             | Stuart M. Perry Inc.     | Winchester       |
| #10 Limestone   | 30             | Stuart M. Perry Inc.     | Winchester       |
| Sand            | 8              | Stuart M. Perry Inc.     | Winchester       |
| PG 64-22        | 4.9            | Citgo Asphalt Refining   | Dumfries, VA     |
| Kling Beta 2700 | 0.5            | Citgo Asphalt Refining   | Dumfries, VA     |
| BM3             | · · · ·        |                          |                  |
| #357 Limestone  | 18             | Acco Stone               | Blacksburg, VA   |
| #68 Limestone   | 30             | Acco Stone               | Blacksburg, VA   |
| #10 Limestone   | 27             | Acco Stone               | Blacksburg, VA   |
| Concrete Sand   | 10             | Wythe Sand Co.           | Wytheville, VA   |
| Processed RAP   | 15             | Adams Construction Co.   | Blacksburg, VA   |
| PG 64-22        | 4.4            | Associated Asphalt, Inc. | Roanoke, VA      |
| Adhere HP+      | 0.5            | Arr-Maz Products         | Winter Haven, FL |
| BM4             |                |                          |                  |
| #67 Aggregate   | 15             | Vulcan Materials         |                  |
| #8 Aggregate    | 15             | Vulcan Materials         |                  |
| #5 Aggregate    | 28             | Vulcan Materials         |                  |
| Sand            | 27             | Vulcan Materials         |                  |
| RAP             | 15             | Branscome Inc.           |                  |
| PG 64-22        | 4.4            | Koch Fuels Inc.          |                  |
| Adhere HP+      | 0.5            | Arr-Maz Products         | Winter Haven, FL |

## APPENDIX B ASPHALT CONTENT, G<sub>mm</sub>, AND GRADATION FOR ALL MIXES

| Table B1. Asphalt content, G <sub>mm</sub> , and aggregate gradation for SM1 |           |           |           |           |           |                |                |  |  |
|------------------------------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|----------------|----------------|--|--|
|                                                                              | Sample 1  | Sample 2  | Sample 3  | Sample 4  | Average   | JMF*           | Acceptance     |  |  |
| Asphalt content (%)                                                          | 4.99      | 4.84      | 5.06      | 4.82      | 4.93      | 5.3            | 5.0-5.6        |  |  |
| G <sub>mm</sub>                                                              | 2.635     | 2.633     | 2.630     | 2.622     | 2.630     | 2.626          |                |  |  |
|                                                                              |           |           | Gradation | •         | •         |                |                |  |  |
| Sieve energing mm                                                            | % Passing | Accepta        | ance range*    |  |  |
| (No.)                                                                        | Sample 1  | Sample 2  | Sample 3  | Sample 4  | Avg.      | Lower<br>limit | Upper<br>limit |  |  |
| 12.5 (1/2)                                                                   | 96.6      | 97.3      | 97.8      | 97.9      | 97.4      | -              | 100            |  |  |
| 9.5 (3/8)                                                                    | 886       | 88.7      | 91.5      | 90.6      | 89.9      | 89             | 97             |  |  |
| 4.75 (#4)                                                                    | 55.6      | 55.7      | 59.5      | 57.1      | 57.2      | 56             | 64             |  |  |
| 2.36 (#8)                                                                    | 37.3      | 37.1      | 39.2      | 37.8      | 37.9      | 36             | 44             |  |  |
| 1.18 (#16)                                                                   | 27.6      | 27.4      | 28.6      | 27.8      | 27.9      | -              | -              |  |  |
| 0.6 (#30)                                                                    | 19.2      | 19.1      | 19.9      | 19.4      | 19.4      | -              | -              |  |  |
| 0.3 (#50)                                                                    | 10.8      | 10.7      | 11.2      | 10.9      | 10.9      | -              | -              |  |  |
| 0.15 (#100)                                                                  | 6.7       | 6.7       | 7.1       | 6.8       | 6.8       | -              | -              |  |  |
| 0.075 (#200)                                                                 | 4.9       | 4.9       | 5.2       | 5.0       | 5.0       | 4              | 6              |  |  |

# Table B1. Asphalt content, G<sub>mm</sub>, and aggregate gradation for SM1

\*Reported from the JMF sheet

| Table B2. Asphalt content, | G <sub>mm</sub> , and | aggregate g | gradation | for SM2 |
|----------------------------|-----------------------|-------------|-----------|---------|
| ruble Dat isphale content, | Smm, and              | " `"        |           |         |

|                     | Sample 1  | Sample 2  | Sample 3  | Sample 4  | Average   | JMF*           | Acceptance     |
|---------------------|-----------|-----------|-----------|-----------|-----------|----------------|----------------|
| Asphalt content (%) | 5.98      | 6.01      | 5.85      | 5.79      | 5.91      | 5.9            | 5.6-6.2        |
| G <sub>mm</sub>     | 2.669     | 2.632     | 2.642     | 2.651     | 2.648     | 2.618          |                |
|                     |           |           | Gradation |           |           |                |                |
| Sieve energing mm   | % Dessing | Accepta        | nce range*     |
| (No.)               | Sample 1  | Sample 2  | Sample 3  | Sample 4  | Avg.      | Lower<br>limit | Upper<br>limit |
| 12.5 (1/2)          | 100.0     | 100.0     | 100.0     | 100.0     | 100.0     | 99             | 100            |
| 9.5 (3/8)           | 94.5      | 96.9      | 96.7      | 97.1      | 96.3      | 92             | 100            |
| 4.75 (#4)           | 53.9      | 58.1      | 59.2      | 57.5      | 57.1      | 56             | 64             |
| 2.36 (#8)           | 36.0      | 38.0      | 38.7      | 37.7      | 37.6      | 37             | 45             |
| 1.18 (#16)          | 27.4      | 28.2      | 28.8      | 28.3      | 28.1      | -              | -              |
| 0.6 (#30)           | 19.8      | 20.1      | 20.7      | 20.3      | 20.2      | -              | -              |
| 0.3 (#50)           | 12.7      | 12.5      | 13.1      | 12.8      | 12.8      | -              | -              |
| 0.15 (#100)         | 8.6       | 8.2       | 8.7       | 8.5       | 8.5       | -              | -              |
| 0.075 (#200)        | 6.5       | 5.8       | 6.4       | 6.3       | 6.3       | 4.9            | 6.9            |

|                     | Sample 1  | Sample 2  | Sample 3                                        | Sample 4  | Average        | JMF*           | Acceptance  |
|---------------------|-----------|-----------|-------------------------------------------------|-----------|----------------|----------------|-------------|
| Asphalt content (%) | 6.30      | 6.40      | 6.43                                            | 6.12      | 6.32           | 5.6            | 5.3-5.9     |
| G <sub>mm</sub>     | 2.597     | 2.593     | 2.591                                           | 2.605     | 2.596          | 2.599          |             |
| Gradation           |           |           |                                                 |           |                |                |             |
| Siava ananing mm    | % Dessing | % Dessing | % Dessing                                       | % Dessing | % Dessing      | Accepta        | ince range* |
| (No.)               | Sample 1  | Sample 2  | % Passing% Passing% PassingSample 3Sample 4Avg. |           | Lower<br>limit | Upper<br>limit |             |
| 12.5 (1/2)          | 99.5      | 99.7      | 99.2                                            | 98.5      | 99.2           | 99             | 100         |
| 9.5 (3/8)           | 91.1      | 90.3      | 92.8                                            | 91.6      | 91.4           | 89             | 97          |
| 4.75 (#4)           | 55.2      | 55.8      | 57.3                                            | 54.8      | 55.8           | 55             | 63          |
| 2.36 (#8)           | 39.4      | 39.9      | 40.4                                            | 38.5      | 39.5           | 36             | 44          |
| 1.18 (#16)          | 29.8      | 30.1      | 30.7                                            | 29.4      | 30.0           | -              | -           |
| 0.6 (#30)           | 21.3      | 21.5      | 21.9                                            | 21.0      | 21.5           | -              | -           |
| 0.3 (#50)           | 13.3      | 13.5      | 13.7                                            | 13.2      | 13.4           | -              | -           |
| 0.15 (#100)         | 9.0       | 9.2       | 9.2                                             | 9.0       | 9.1            | -              | -           |
| 0.075 (#200)        | 6.1       | 6.3       | 6.4                                             | 6.3       | 6.3            | 4.7            | 6.7         |

Table B3. Asphalt content,  $G_{\rm mm},$  and aggregate gradation for SM3

| Fable B4. Asphalt content, | G <sub>mm</sub> , and | aggregate gradation | for IM1 |
|----------------------------|-----------------------|---------------------|---------|
|----------------------------|-----------------------|---------------------|---------|

|                     | Sample 1  | Sample 2  | Sample 3  | Sample 4  | Average   | JMF*           | Acceptance     |
|---------------------|-----------|-----------|-----------|-----------|-----------|----------------|----------------|
| Asphalt content (%) | 5.35      | 5.29      | 5.21      | 5.20      | 5.26      | 4.60           | 4.3-4.9        |
| G <sub>mm</sub>     | 2.480     | 2.482     | 2.468     | 2.477     | 2.477     | 2.504          |                |
|                     |           |           | Gradation |           |           |                |                |
| Sieve opening mm    | % Passing | Accepta        | nce range*     |
| (No.)               | Sample 1  | Sample 2  | Sample 3  | Sample 4  | Avg.      | Lower<br>limit | Upper<br>limit |
| 25 (1)              | 100.0     | 100.0     | 100.0     | 100.0     | 100.0     | -              | 100            |
| 19 (3/4)            | 100.0     | 100.0     | 100.0     | 100.0     | 100.0     | 92             | 100            |
| 12.5 (1/2)          | 97.1      | 94.9      | 96.0      | 95.0      | 95.8      | 84             | 92             |
| 9.5 (3/8)           | 88.0      | 86.9      | 88.3      | 86.9      | 87.5      | -              | -              |
| 4.75 (#4)           | 53.5      | 53.9      | 54.4      | 50.4      | 53.0      | -              | -              |
| 2.36 (#8)           | 37.7      | 38.3      | 38.5      | 36.5      | 37.7      | 29             | 37             |
| 1.18 (#16)          | 29.4      | 29.7      | 29.8      | 28.6      | 29.4      | -              | -              |
| 0.6 (#30)           | 21.9      | 22.0      | 22.0      | 21.4      | 21.8      | -              | -              |
| 0.3 (#50)           | 14.5      | 14.7      | 14.6      | 14.3      | 14.5      | -              | -              |
| 0.15 (#100)         | 9.8       | 10.0      | 9.8       | 9.8       | 9.9       | -              | _              |
| 0.075 (#200)        | 6.5       | 6.8       | 6.6       | 6.7       | 6.6       | 4.0            | 6.0            |

|                     | Sample 1  | Sample 2  | Sample 3  | Sample 4  | Average   | JMF*           | Acceptance     |
|---------------------|-----------|-----------|-----------|-----------|-----------|----------------|----------------|
| Asphalt content (%) | 4.56      | 4.54      | 4.41      | 4.57      | 4.52      | 4.6            | 4.3-4.9        |
| G <sub>mm</sub>     | 2.512     | 2.510     | 2.511     | 2.521     | 2.513     | 2.500          |                |
|                     |           |           | Gradation |           |           |                |                |
| Siava ananing mm    | % Passing | Accepta        | nce range*     |
| (No.)               | Sample 1  | Sample 2  | Sample 3  | Sample 4  | Avg.      | Lower<br>limit | Upper<br>limit |
| 25 (1)              | 100.0     | 100.0     | 100.0     | 100.0     | 100.0     | -              | 100            |
| 19 (3/4)            | 100.0     | 97.8      | 95.0      | 97.7      | 97.6      | 92             | 100            |
| 12.5 (1/2)          | 85.4      | 86.0      | 82.6      | 84.3      | 84.6      | 80             | 88             |
| 9.5 (3/8)           | 74.2      | 73.9      | 70.9      | 74.1      | 73.3      | -              | -              |
| 4.75 (#4)           | 41.8      | 40.7      | 41.1      | 42.2      | 41.5      | -              | -              |
| 2.36 (#8)           | 29.8      | 29.3      | 29.9      | 30.0      | 29.8      | 29             | 37             |
| 1.18 (#16)          | 24.4      | 24.0      | 24.2      | 24.4      | 24.2      | -              | -              |
| 0.6 (#30)           | 18.3      | 18.0      | 18.0      | 18.3      | 18.1      | I              | -              |
| 0.3 (#50)           | 11.6      | 11.4      | 11.4      | 11.6      | 11.5      | -              | -              |
| 0.15 (#100)         | 6.7       | 6.5       | 6.5       | 6.7       | 6.6       | -              | -              |
| 0.075 (#200)        | 3.9       | 3.7       | 3.8       | 3.9       | 3.8       | 3.4            | 5.4            |

Table B5. Asphalt content,  $G_{mm}$ , and aggregate gradation for IM2

|                            | Sample 1   | Sample 2   | Sample 3   | Sample 4   | Average    | JMF*           | Acceptance     |
|----------------------------|------------|------------|------------|------------|------------|----------------|----------------|
| Asphalt content (%)        | 4.76       | 5.16       | 4.80       | 4.83       | 4.89       | 4.9            | 4.6-5.2        |
| G <sub>mm</sub>            | 2.533      | 2.516      | 2.523      | 2.523      | 2.524      |                |                |
|                            |            |            | Gradation  |            | •          |                |                |
| S:                         | 0/ Dessing | 9/ Dessing | 0/ Dessing | 0/ Dessing | 9/ Dessing | Accepta        | ance range*    |
| Sieve opening, mm<br>(No.) | Sample 1   | Sample 2   | Sample 3   | Sample 4   | Avg.       | Lower<br>limit | Upper<br>limit |
| 25 (1)                     | 100.0      | 100.0      | 100.0      | 100.0      | 100.0      | -              | 100            |
| 19 (3/4)                   | 96.3       | 97.4       | 93.7       | 98.3       | 96.4       | 92             | 100            |
| 12.5 (1/2)                 | 75.6       | 83.3       | 79.8       | 80.6       | 79.8       | 76             | 84             |
| 9.5 (3/8)                  | 66.3       | 73.9       | 69.0       | 68.6       | 69.5       | -              | -              |
| 4.75 (#4)                  | 42.7       | 48.7       | 45.5       | 45.6       | 45.6       | -              | -              |
| 2.36 (#8)                  | 28.7       | 32.3       | 30.4       | 30.1       | 30.4       | 28             | 36             |
| 1.18 (#16)                 | 20.1       | 22.2       | 21.2       | 21.0       | 21.1       | -              | -              |
| 0.6 (#30)                  | 14.7       | 16.2       | 15.5       | 15.4       | 15.4       | -              | -              |
| 0.3 (#50)                  | 10.0       | 10.9       | 10.5       | 10.4       | 10.4       | -              | -              |
| 0.15 (#100)                | 7.0        | 7.5        | 7.3        | 7.2        | 7.2        | -              | -              |
| 0.075 (#200)               | 5.3        | 5.6        | 5.5        | 5.4        | 5.5        | 4.0            | 6.0            |

# Table B6. Asphalt content, $G_{\rm mm},$ and aggregate gradation for IM3

|                     | Sample 1  | Sample 2  | Sample 3  | Sample 4  | Average   | JMF*           | Acceptance     |  |  |  |
|---------------------|-----------|-----------|-----------|-----------|-----------|----------------|----------------|--|--|--|
| Asphalt content (%) | 5.29      | 5.49      | 5.22      | 5.72      | 5.43      | 5.5            | 5.2-5.8        |  |  |  |
| G <sub>mm</sub>     | 2.489     | 2.489     | 2.486     | 2.481     | 2.486     | 2.502          |                |  |  |  |
|                     | Gradation |           |           |           |           |                |                |  |  |  |
| Sieve enening mm    | % Passing | Accepta        | nce range*     |  |  |  |
| (No.)               | Sample 1  | Sample 2  | Sample 3  | Sample 4  | Avg.      | Lower<br>limit | Upper<br>limit |  |  |  |
| 25 (1)              | 100.0     | 100.0     | 100.0     | 100.0     | 100.0     | -              | 100            |  |  |  |
| 19 (3/4)            | 98.6      | 98.3      | 98.1      | 100.0     | 98.8      | 92             | 100            |  |  |  |
| 12.5 (1/2)          | 85.0      | 85.6      | 83.4      | 87.1      | 85.3      | 82             | 90             |  |  |  |
| 9.5 (3/8)           | 75.8      | 74.7      | 72.8      | 78.3      | 75.4      | -              | -              |  |  |  |
| 4.75 (#4)           | 57.8      | 58.2      | 56.6      | 61.5      | 58.5      | -              | -              |  |  |  |
| 2.36 (#8)           | 39.4      | 39.6      | 39.1      | 41.9      | 40.0      | 26             | 34             |  |  |  |
| 1.18 (#16)          | 30.0      | 30.1      | 29.7      | 31.4      | 30.3      | -              | -              |  |  |  |
| 0.6 (#30)           | 23.2      | 23.3      | 23.0      | 24.2      | 23.4      | I              | -              |  |  |  |
| 0.3 (#50)           | 14.3      | 14.3      | 14.1      | 14.7      | 14.4      | -              | -              |  |  |  |
| 0.15 (#100)         | 8.1       | 8.0       | 7.9       | 8.2       | 8.0       | -              | -              |  |  |  |
| 0.075 (#200)        | 6.0       | 5.9       | 5.8       | 6.0       | 5.9       | 4.0            | 6.0            |  |  |  |

Table B7. Asphalt content,  $G_{mm}$ , and aggregate gradation for IM4

|                     | Sample 1  | Sample 2  | Sample 3  | Sample 4  | Average   | JMF*           | Acceptance     |  |  |
|---------------------|-----------|-----------|-----------|-----------|-----------|----------------|----------------|--|--|
| Asphalt content (%) | 4.51      | 5.22      | 4.27      | 4.50      | 4.62      | 4.4            | 4.1-4.7        |  |  |
| G <sub>mm</sub>     | 2.690     | 2.692     | 2.698     | 2.685     | 2.691     | 2.668          |                |  |  |
| Gradation           |           |           |           |           |           |                |                |  |  |
| Siava ananing mm    | % Dessing | Accepta        | ance range*    |  |  |
| (No.)               | Sample 1  | Sample 2  | Sample 3  | Sample 4  | Avg.      | Lower<br>limit | Upper<br>limit |  |  |
| 37.5 (1.5)          | 100.0     | 100.0     | 100.0     | 100.0     | 100.0     |                | 100            |  |  |
| 25 (1)              | 100.0     | 100.0     | 98.5      | 98.2      | 99.2      | 92             | 100            |  |  |
| 19 (3/4)            | 95.3      | 97.4      | 92.3      | 92.6      | 94.4      | 82             | 90             |  |  |
| 12.5 (1/2)          | 77.9      | 76.8      | 72.2      | 76.7      | 75.9      | -              | -              |  |  |
| 9.5 (3/8)           | 67.8      | 65.6      | 62.8      | 67.7      | 66.0      | -              | -              |  |  |
| 4.75 (#4)           | 47.9      | 46.4      | 43.6      | 47.2      | 46.3      | -              | -              |  |  |
| 2.36 (#8)           | 32.3      | 31.5      | 29.7      | 31.9      | 31.3      | 26             | 34             |  |  |
| 1.18 (#16)          | 23.5      | 23.2      | 22.0      | 23.4      | 23.0      | -              | -              |  |  |
| 0.6 (#30)           | 16.9      | 16.6      | 15.9      | 16.8      | 16.6      | -              | -              |  |  |
| 0.3 (#50)           | 10.8      | 10.6      | 10.2      | 10.8      | 10.6      | -              | -              |  |  |
| 0.15 (#100)         | 7.5       | 7.3       | 7.1       | 7.5       | 7.4       | -              | -              |  |  |
| 0.075 (#200)        | 5.6       | 5.4       | 5.2       | 5.6       | 5.4       | 3.0            | 5.0            |  |  |

# Table B8. Asphalt content, $G_{\text{mm}},$ and aggregate gradation for BM1

|                     | Sample 1  | Sample 2  | Sample 3  | Sample 4  | Average   | JMF*           | Acceptance     |  |  |
|---------------------|-----------|-----------|-----------|-----------|-----------|----------------|----------------|--|--|
| Asphalt content (%) | 5.01      | 4.55      | 5.03      | 4.86      | 4.86      | 4.9            | 4.6-5.2        |  |  |
| G <sub>mm</sub>     | 2.493     | 2.522     | 2.504     | 2.519     | 2.509     | 2.515          |                |  |  |
| Gradation           |           |           |           |           |           |                |                |  |  |
| Siava ananing mm    | % Passing | Accepta        | nce range*     |  |  |
| (No.)               | Sample 1  | Sample 2  | Sample 3  | Sample 4  | Avg.      | Lower<br>limit | Upper<br>limit |  |  |
| 37.5 (1.5)          | 100.0     | 100.0     | 100.0     | 100.0     | 100.0     |                | 100            |  |  |
| 25 (1)              | 82.5      | 83.7      | 82.4      | 87.8      | 84.1      | 90             | 98             |  |  |
| 19 (3/4)            | 73.6      | 71.4      | 75.4      | 74.9      | 73.8      | 73             | 81             |  |  |
| 12.5 (1/2)          | 71.2      | 66.1      | 70.8      | 70.4      | 69.6      | -              | -              |  |  |
| 9.5 (3/8)           | 67.8      | 63.8      | 67.5      | 67.5      | 66.6      | -              | -              |  |  |
| 4.75 (#4)           | 43.5      | 41.5      | 44.2      | 42.5      | 42.9      | -              | -              |  |  |
| 2.36 (#8)           | 26.8      | 25.7      | 27.2      | 26.3      | 26.5      | 25             | 33             |  |  |
| 1.18 (#16)          | 17.3      | 16.3      | 17.6      | 16.8      | 17.0      | -              | -              |  |  |
| 0.6 (#30)           | 11.6      | 10.9      | 11.9      | 11.2      | 11.4      | -              | -              |  |  |
| 0.3 (#50)           | 8.4       | 7.8       | 8.6       | 8.0       | 8.2       | -              | -              |  |  |
| 0.15 (#100)         | 6.7       | 6.2       | 7.0       | 6.3       | 6.5       | -              | -              |  |  |
| 0.075 (#200)        | 5.5       | 5.2       | 5.9       | 5.2       | 5.5       | 3.6            | 5.6            |  |  |

Table B9. Asphalt content,  $G_{mm}$ , and aggregate gradation for BM2

| Table | <b>B10</b> . | Asphalt | content, | G <sub>mm</sub> , | and | aggreg | gate | gradation | for | BM3 |
|-------|--------------|---------|----------|-------------------|-----|--------|------|-----------|-----|-----|
|       |              |         |          | ~ шш,             |     |        |      | 8         |     |     |

|                     | Sample 1  | Sample 2  | Sample 3  | Sample 4  | Average   | JMF*           | Acceptance     |  |  |
|---------------------|-----------|-----------|-----------|-----------|-----------|----------------|----------------|--|--|
| Asphalt content (%) | 3.87      | 3.96      | 3.74      | 4.05      | 3.91      | 4.4            | 4.1-4.7        |  |  |
| G <sub>mm</sub>     | 2.646     | 2.638     | 2.645     | 2.631     | 2.640     | 2.605          |                |  |  |
| Gradation           |           |           |           |           |           |                |                |  |  |
| Sieve opening mm    | % Passing | Accepta        | ince range*    |  |  |
| (No.)               | Sample 1  | Sample 2  | Sample 3  | Sample 4  | Avg.      | Lower<br>limit | Upper<br>limit |  |  |
| 37.5 (1.5)          | 100.0     | 100.0     | 100.0     | 100.0     | 100.0     |                | 100            |  |  |
| 25 (1)              | 95.8      | 100.0     | 96.2      | 97.2      | 97.3      | 90             | 98             |  |  |
| 19 (3/4)            | 87.4      | 87.6      | 86.7      | 88.8      | 87.6      | 82             | 90             |  |  |
| 12.5 (1/2)          | 72.6      | 72.9      | 72.1      | 75.7      | 73.3      | -              | -              |  |  |
| 9.5 (3/8)           | 64.6      | 63.7      | 62.4      | 68.3      | 64.8      | -              | -              |  |  |
| 4.75 (#4)           | 46.1      | 47.3      | 47.6      | 50.9      | 48.0      | -              | -              |  |  |
| 2.36 (#8)           | 23.6      | 24.2      | 23.5      | 25.4      | 24.2      | 25             | 33             |  |  |
| 1.18 (#16)          | 16.8      | 17.2      | 16.8      | 17.8      | 17.1      | -              | -              |  |  |
| 0.6 (#30)           | 12.9      | 13.1      | 13.0      | 13.6      | 13.1      | -              | -              |  |  |
| 0.3 (#50)           | 8.7       | 8.8       | 8.8       | 9.2       | 8.9       | -              | -              |  |  |
| 0.15 (#100)         | 7.0       | 7.0       | 7.0       | 7.3       | 7.1       | -              | -              |  |  |
| 0.075 (#200)        | 6.0       | 6.0       | 6.0       | 6.3       | 6.1       | 4.0            | 6.0            |  |  |

|                     | Sample 1  | Sample 2  | Sample 3  | Sample 4  | Average   | JMF*           | Acceptance     |  |  |  |
|---------------------|-----------|-----------|-----------|-----------|-----------|----------------|----------------|--|--|--|
| Asphalt content (%) | 4.70      | 4.50      | 4.53      | 4.32      | 4.51      | 4.4            | 4.1-4.7        |  |  |  |
| G <sub>mm</sub>     | 2.506     | 2.514     | 2.520     | 2.525     | 2.516     | 2.525          |                |  |  |  |
| Gradation           |           |           |           |           |           |                |                |  |  |  |
| Siava ananing mm    | % Passing | Accepta        | ance range*    |  |  |  |
| (No.)               | Sample 1  | Sample 2  | Sample 3  | Sample 4  | Avg.      | Lower<br>limit | Upper<br>limit |  |  |  |
| 37.5 (1.5)          | 100.0     | 100.0     | 100.0     | 100.0     | 100.0     |                | 100            |  |  |  |
| 25 (1)              | 100.0     | 100.0     | 100.0     | 100.0     | 100.0     | 92             | 100            |  |  |  |
| 19 (3/4)            | 95.5      | 96.1      | 95.6      | 94.6      | 95.5      | 81             | 89             |  |  |  |
| 12.5 (1/2)          | 85.0      | 80.8      | 82.7      | 81.4      | 82.5      | -              | -              |  |  |  |
| 9.5 (3/8)           | 73.2      | 68.7      | 70.5      | 69.8      | 70.6      | -              | -              |  |  |  |
| 4.75 (#4)           | 42.4      | 40.9      | 41.5      | 39.6      | 41.1      | -              | -              |  |  |  |
| 2.36 (#8)           | 31.2      | 30.2      | 30.7      | 29.3      | 30.3      | 33             | 41             |  |  |  |
| 1.18 (#16)          | 25.2      | 24.6      | 24.8      | 24.0      | 24.7      | -              | -              |  |  |  |
| 0.6 (#30)           | 18.5      | 18.1      | 18.2      | 17.9      | 18.2      | -              | -              |  |  |  |
| 0.3 (#50)           | 11.1      | 10.9      | 10.9      | 10.9      | 11.0      | -              | -              |  |  |  |
| 0.15 (#100)         | 6.3       | 6.2       | 6.2       | 6.3       | 6.2       | -              | -              |  |  |  |
| 0.075 (#200)        | 3.9       | 3.8       | 3.8       | 4.0       | 3.9       | 3.2            | 5.2            |  |  |  |

Table B11. Asphalt content,  $G_{mm}$ , and aggregate gradation for BM4

# APPENDIX C MEASURED DYNAMIC MODULUS RESULTS

| Temp. | Freq. | SM1-      | 1    | SM1-      | 2    | SM1-      | 3    | Avera     | Average |      | )V   |
|-------|-------|-----------|------|-----------|------|-----------|------|-----------|---------|------|------|
| (°F)  | (Hz)  | E*        | δ    | E*        | δ    | E*        | δ    | E*        | δ       | E*   | δ    |
|       | 25    | 3,835,448 | 2.2  | 4,688,959 | 2.9  | 4,476,852 | 2.2  | 4,333,753 | 2.4     | 10.3 | 14.9 |
|       | 10    | 3,751,927 | 3.3  | 4,106,812 | 3.5  | 4,312,782 | 3.1  | 4,057,174 | 3.3     | 7.0  | 5.7  |
| 10    | 5     | 3,623,147 | 3.6  | 4,105,549 | 4.1  | 4,151,776 | 4.5  | 3,960,157 | 4.1     | 7.4  | 6.3  |
| 10    | 1     | 3,292,053 | 3.8  | 3,692,480 | 5.4  | 3,795,503 | 6.7  | 3,593,345 | 5.3     | 7.4  | 14.7 |
|       | 0.5   | 3,155,697 | 6.6  | 3,396,530 | 5.8  | 3,642,242 | 6.8  | 3,398,156 | 6.4     | 7.2  | 8.2  |
|       | 0.1   | 2,751,969 | 7.8  | 3,349,788 | 6.1  | 3,220,936 | 7.5  | 3,107,564 | 7.1     | 10.1 | 10.5 |
|       | 25    | 2,386,559 | 9.4  | 2,280,613 | 8.2  | 3,018,213 | 8.6  | 2,561,795 | 8.8     | 15.6 | 3.0  |
|       | 10    | 2,196,173 | 10.4 | 2,041,250 | 10.9 | 2,697,734 | 10.7 | 2,311,719 | 10.7    | 14.8 | 1.0  |
| 40    | 5     | 2,038,852 | 11.2 | 1,866,631 | 11.4 | 2,509,424 | 9.5  | 2,138,302 | 10.7    | 15.6 | 9.3  |
| 40    | 1     | 1,662,643 | 13.0 | 1,483,098 | 13.2 | 2,035,394 | 12.3 | 1,727,045 | 12.8    | 16.3 | 3.3  |
|       | 0.5   | 1,489,189 | 15.5 | 1,313,927 | 16.0 | 1,815,690 | 15.6 | 1,539,602 | 15.7    | 16.5 | 1.4  |
|       | 0.1   | 1,118,509 | 19.6 | 968,358   | 20.5 | 1,384,811 | 19.4 | 1,157,226 | 19.8    | 18.2 | 2.9  |
| 70    | 25    | 1,515,985 | 17.9 | 1,151,945 | 18.8 | 1,419,005 | 18.2 | 1,362,312 | 18.3    | 13.8 | 1.9  |
|       | 10    | 1,242,674 | 20.1 | 959,039   | 20.1 | 1,167,187 | 20.2 | 1,122,966 | 20.1    | 13.1 | 0.2  |
|       | 5     | 1,051,940 | 21.9 | 820,200   | 21.9 | 1,001,880 | 22.2 | 958,007   | 22.0    | 12.7 | 0.8  |
| 70    | 1     | 683,430   | 26.4 | 540,774   | 26.2 | 669,826   | 26.8 | 631,343   | 26.5    | 12.5 | 1.2  |
|       | 0.5   | 536,882   | 30.9 | 423,167   | 30.7 | 535,707   | 31.9 | 498,585   | 31.1    | 13.1 | 1.9  |
|       | 0.1   | 322,957   | 34.2 | 260,197   | 34.6 | 334,983   | 36.5 | 306,046   | 35.1    | 13.1 | 2.8  |
|       | 25    | 497,636   | 31.2 | 376,334   | 32.2 | 490,104   | 31.9 | 454,691   | 31.8    | 14.9 | 0.7  |
|       | 10    | 375,782   | 31.9 | 293,682   | 32.4 | 387,783   | 33.3 | 352,416   | 32.5    | 14.5 | 1.4  |
| 100   | 5     | 292,950   | 33.2 | 230,763   | 33.3 | 307,610   | 34.3 | 277,108   | 33.6    | 14.7 | 1.4  |
| 100   | 1     | 160,690   | 33.6 | 128,241   | 33.4 | 172,165   | 34.9 | 153,699   | 34.0    | 14.8 | 2.1  |
|       | 0.5   | 119,358   | 34.9 | 96,715    | 34.6 | 128,156   | 36.7 | 114,743   | 35.4    | 14.1 | 3.0  |
|       | 0.1   | 74,609    | 30.3 | 64,260    | 29.4 | 79,842    | 32.5 | 72,904    | 30.7    | 10.9 | 5.1  |
|       | 25    | 136,638   | 29.0 | 112,191   | 31.9 | 148,153   | 33.6 | 132,327   | 31.5    | 13.9 | 3.4  |
|       | 10    | 98,011    | 27.0 | 83,799    | 28.8 | 103,967   | 30.8 | 95,259    | 28.8    | 10.9 | 4.0  |
| 130   | 5     | 79,268    | 24.6 | 67,989    | 26.1 | 82,016    | 28.0 | 76,424    | 26.2    | 9.7  | 4.0  |
| 130   | 1     | 54,640    | 18.7 | 47,650    | 19.9 | 53,286    | 21.6 | 51,859    | 20.0    | 7.1  | 4.7  |
|       | 0.5   | 48,882    | 17.5 | 43,211    | 18.4 | 46,852    | 19.7 | 46,315    | 18.5    | 6.2  | 3.9  |
|       | 0.1   | 42,635    | 14.3 | 38,933    | 14.7 | 39,923    | 15.4 | 40,497    | 14.8    | 4.7  | 2.7  |

Table C1. Measured dynamic modulus (psi) and phase angle (°) for mix SM1

| Temp. | Freq. | SM2-      | 1    | SM2-      | 2    | SM2-      | 3    | Avera     | ge   | CC   | )V   |
|-------|-------|-----------|------|-----------|------|-----------|------|-----------|------|------|------|
| (°F)  | (Hz)  | E*        | δ    | E*        | δ    | E*        | δ    | E*        | δ    | E*   | δ    |
|       | 25    | 3,361,675 | 2.7  | 3,853,492 | 2.2  | 3,900,886 | 2.5  | 3,705,351 | 2.5  | 8.1  | 7.4  |
|       | 10    | 3,119,653 | 3.5  | 3,605,338 | 4.1  | 3,776,419 | 3.6  | 3,500,470 | 3.7  | 9.7  | 7.6  |
| 10    | 5     | 2,975,516 | 4.2  | 3,440,721 | 4.8  | 3,673,327 | 3.9  | 3,363,188 | 4.3  | 10.6 | 10.9 |
| 10    | 1     | 2,891,353 | 5.8  | 3,201,201 | 5.9  | 3,303,212 | 4.8  | 3,131,922 | 5.5  | 6.8  | 9.8  |
|       | 0.5   | 2,835,376 | 6.5  | 3,053,679 | 6.4  | 3,274,504 | 5.5  | 3,054,520 | 6.2  | 7.2  | 7.6  |
|       | 0.1   | 2,377,251 | 8.6  | 2,717,761 | 6.8  | 2,717,750 | 7.8  | 2,604,254 | 7.7  | 7.5  | 7.4  |
|       | 25    | 2,692,772 | 7.9  | 2,733,359 | 7.0  | 2,391,087 | 7.3  | 2,605,739 | 7.4  | 7.2  | 2.8  |
|       | 10    | 2,435,325 | 8.8  | 2,473,170 | 10.7 | 2,139,470 | 9.9  | 2,349,322 | 9.8  | 7.8  | 5.1  |
| 40    | 5     | 2,206,687 | 11.7 | 2,273,719 | 10.9 | 1,986,331 | 11.2 | 2,155,579 | 11.2 | 7.0  | 1.9  |
| 40    | 1     | 1,788,554 | 14.5 | 1,830,099 | 14.8 | 1,586,363 | 14.0 | 1,735,005 | 14.5 | 7.5  | 2.8  |
|       | 0.5   | 1,584,017 | 16.8 | 1,604,446 | 17.9 | 1,423,560 | 18.0 | 1,537,341 | 17.6 | 6.4  | 1.3  |
|       | 0.1   | 1,145,724 | 23.2 | 1,203,918 | 21.9 | 1,042,206 | 21.8 | 1,130,616 | 22.3 | 7.2  | 1.2  |
| 70    | 25    | 1,245,189 | 19.4 | 1,202,700 | 19.3 | 1,143,550 | 19.8 | 1,197,146 | 19.5 | 4.3  | 1.4  |
|       | 10    | 1,008,604 | 21.9 | 997,219   | 22.0 | 939,208   | 22.1 | 981,677   | 22.0 | 3.8  | 0.4  |
| 70    | 5     | 851,962   | 24.4 | 851,258   | 24.1 | 794,911   | 24.3 | 832,710   | 24.3 | 3.9  | 0.5  |
| 70    | 1     | 546,002   | 29.6 | 552,658   | 29.4 | 512,563   | 29.6 | 537,074   | 29.6 | 4.0  | 0.4  |
|       | 0.5   | 421,218   | 34.6 | 430,229   | 34.7 | 398,904   | 34.9 | 416,784   | 34.8 | 3.9  | 0.2  |
|       | 0.1   | 250,352   | 38.1 | 259,003   | 37.8 | 239,780   | 38.1 | 249,712   | 38.0 | 3.9  | 0.5  |
|       | 25    | 369,309   | 33.4 | 375,195   | 34.3 | 447,021   | 33.7 | 397,175   | 33.8 | 10.9 | 0.9  |
|       | 10    | 268,965   | 33.5 | 280,337   | 34.5 | 325,518   | 33.9 | 291,607   | 34.0 | 10.3 | 1.0  |
| 100   | 5     | 204,861   | 34.0 | 215,984   | 34.5 | 249,150   | 34.1 | 223,332   | 34.2 | 10.3 | 0.6  |
| 100   | 1     | 112,268   | 31.6 | 118,099   | 32.2 | 137,892   | 31.8 | 122,753   | 31.9 | 10.9 | 0.7  |
|       | 0.5   | 87,110    | 31.8 | 91,483    | 32.1 | 108,427   | 31.5 | 95,673    | 31.8 | 11.8 | 0.9  |
|       | 0.1   | 57,925    | 26.3 | 59,823    | 26.4 | 74,060    | 25.7 | 63,936    | 26.1 | 13.8 | 1.3  |
|       | 25    | 98,187    | 29.4 | 118,232   | 27.8 | 93,799    | 29.7 | 103,406   | 28.9 | 12.6 | 3.3  |
|       | 10    | 73,442    | 25.8 | 86,912    | 25.5 | 68,876    | 26.9 | 76,410    | 26.1 | 12.3 | 2.6  |
| 130   | 5     | 60,440    | 23.6 | 70,988    | 23.4 | 56,187    | 24.4 | 62,538    | 23.8 | 12.2 | 2.2  |
| 150   | 1     | 43,126    | 18.4 | 49,601    | 18.9 | 38,936    | 19.4 | 43,888    | 18.9 | 12.2 | 1.5  |
|       | 0.5   | 38,922    | 17.4 | 44,204    | 18.1 | 34,144    | 18.3 | 39,090    | 17.9 | 12.9 | 0.9  |
|       | 0.1   | 34,194    | 15.3 | 37,633    | 16.4 | 28,866    | 15.4 | 33,564    | 15.7 | 13.2 | 3.2  |

Table C2. Measured dynamic modulus (psi) and phase angle (°) for mix SM2

| Temp. | Freq. | SM3-      | 3    | SM3-      | 4    | SM3-      | 5    | Avera     | ge   | CO   | V   |
|-------|-------|-----------|------|-----------|------|-----------|------|-----------|------|------|-----|
| (°F)  | (Hz)  | E*        | δ    | E*        | δ    | E*        | δ    | E*        | δ    | E*   | δ   |
|       | 25    | 2,983,947 | 3.3  | 3,159,968 | 3.5  | 3,212,086 | 3.7  | 3,118,667 | 3.5  | 3.8  | 4.2 |
|       | 10    | 2,774,559 | 4.9  | 3,044,689 | 4.9  | 3,077,795 | 5.4  | 2,965,681 | 5.1  | 5.6  | 4.9 |
| 10    | 5     | 2,645,241 | 6.0  | 2,914,124 | 5.6  | 2,954,835 | 6.1  | 2,838,067 | 5.9  | 5.9  | 3.9 |
| 10    | 1     | 2,336,639 | 7.7  | 2,580,539 | 7.1  | 2,608,025 | 7.7  | 2,508,401 | 7.5  | 6.0  | 4.4 |
|       | 0.5   | 2,189,525 | 8.7  | 2,443,996 | 8.6  | 2,459,759 | 8.8  | 2,364,427 | 8.7  | 6.4  | 1.1 |
|       | 0.1   | 1,839,427 | 11.4 | 2,069,365 | 10.3 | 2,087,677 | 11.3 | 1,998,823 | 11.0 | 6.9  | 4.5 |
|       | 25    | 1,745,398 | 10.4 | 1,938,607 | 10.8 | 1,886,781 | 10.9 | 1,856,929 | 10.7 | 5.4  | 0.8 |
|       | 10    | 1,537,887 | 13.4 | 1,694,713 | 11.8 | 1,656,442 | 12.7 | 1,629,681 | 12.6 | 5.0  | 4.0 |
| 40    | 5     | 1,379,286 | 16.0 | 1,521,620 | 13.5 | 1,499,349 | 14.6 | 1,466,752 | 14.7 | 5.2  | 4.5 |
| 40    | 1     | 1,015,539 | 19.8 | 1,167,131 | 17.7 | 1,132,291 | 18.3 | 1,104,987 | 18.6 | 7.2  | 2.5 |
|       | 0.5   | 864,401   | 22.7 | 1,006,109 | 21.1 | 970,848   | 22.1 | 947,119   | 22.0 | 7.8  | 2.6 |
|       | 0.1   | 580,466   | 29.2 | 682,960   | 26.4 | 659,131   | 27.8 | 640,852   | 27.8 | 8.4  | 2.9 |
| 70    | 25    | 754,173   | 25.0 | 815,983   | 22.6 | 792,607   | 24.9 | 787,588   | 24.2 | 4.0  | 4.9 |
|       | 10    | 596,386   | 27.4 | 650,060   | 25.1 | 630,115   | 26.0 | 625,520   | 26.2 | 4.3  | 2.2 |
|       | 5     | 488,170   | 29.4 | 535,729   | 27.1 | 515,923   | 28.0 | 513,274   | 28.1 | 4.7  | 2.1 |
| 70    | 1     | 293,147   | 32.9 | 325,934   | 31.4 | 311,024   | 31.7 | 310,035   | 32.0 | 5.3  | 1.0 |
|       | 0.5   | 221,368   | 36.9 | 247,073   | 35.2 | 237,512   | 35.7 | 235,317   | 36.0 | 5.5  | 1.0 |
|       | 0.1   | 134,660   | 36.5 | 150,171   | 35.3 | 144,582   | 34.9 | 143,138   | 35.6 | 5.5  | 1.0 |
|       | 25    | 190,047   | 32.6 | 223,707   | 31.5 | 238,863   | 33.2 | 217,539   | 32.4 | 11.5 | 2.6 |
|       | 10    | 136,541   | 31.3 | 156,512   | 31.1 | 170,240   | 31.7 | 154,431   | 31.4 | 11.0 | 1.0 |
| 100   | 5     | 107,558   | 30.3 | 122,935   | 30.5 | 131,664   | 30.7 | 120,719   | 30.5 | 10.1 | 0.3 |
| 100   | 1     | 64,815    | 26.2 | 73,274    | 27.3 | 77,425    | 26.7 | 71,838    | 26.7 | 8.9  | 1.2 |
|       | 0.5   | 52,956    | 25.5 | 58,729    | 27.3 | 62,641    | 26.1 | 58,109    | 26.3 | 8.4  | 2.5 |
|       | 0.1   | 38,697    | 21.7 | 41,710    | 23.4 | 45,375    | 22.1 | 41,927    | 22.4 | 8.0  | 3.0 |
|       | 25    | 64,192    | 24.3 | 70,470    | 27.9 | 70,362    | 27.1 | 68,341    | 26.4 | 5.3  | 2.9 |
|       | 10    | 48,012    | 22.3 | 51,133    | 24.3 | 51,209    | 23.0 | 50,118    | 23.2 | 3.6  | 2.9 |
| 130   | 5     | 38,509    | 21.2 | 42,767    | 22.6 | 42,418    | 21.5 | 41,232    | 21.8 | 5.7  | 2.5 |
| 150   | 1     | 27,409    | 17.8 | 28,355    | 19.2 | 30,054    | 17.1 | 28,606    | 18.0 | 4.7  | 5.7 |
|       | 0.5   | 23,437    | 19.0 | 24,216    | 19.2 | 26,723    | 17.3 | 24,792    | 18.5 | 6.9  | 5.2 |
|       | 0.1   | 18,070    | 16.8 | 18,920    | 16.9 | 22,475    | 15.2 | 19,822    | 16.3 | 11.8 | 5.1 |

Table C3. Measured dynamic modulus (psi) and phase angle (°) for mix SM3

| Temp. | Freq. | IM1-2     | 2    | IM1-      | 3    | IM1-      | 4    | Avera     | ge   | CO   | V   |
|-------|-------|-----------|------|-----------|------|-----------|------|-----------|------|------|-----|
| (°F)  | (Hz)  | E*        | δ    | E*        | δ    | E*        | δ    | E*        | δ    | E*   | δ   |
|       | 25    | 3,799,959 | 2.6  | 2,601,843 | 2.0  | 3,982,446 | 2.1  | 3,461,416 | 2.3  | 21.7 | 5.3 |
|       | 10    | 3,753,837 | 3.8  | 2,496,021 | 3.2  | 3,688,202 | 3.2  | 3,312,687 | 3.4  | 21.4 | 3.5 |
| 10    | 5     | 3,652,951 | 4.2  | 2,415,023 | 3.7  | 3,613,686 | 3.6  | 3,227,220 | 3.8  | 21.8 | 2.7 |
| 10    | 1     | 3,335,630 | 5.7  | 2,248,723 | 4.8  | 3,350,664 | 4.7  | 2,978,339 | 5.1  | 21.2 | 4.1 |
|       | 0.5   | 3,215,055 | 6.1  | 2,159,253 | 5.6  | 3,237,335 | 5.1  | 2,870,548 | 5.6  | 21.5 | 5.3 |
|       | 0.1   | 2,848,330 | 8.7  | 1,930,030 | 6.9  | 2,936,947 | 6.5  | 2,571,769 | 7.4  | 21.7 | 5.9 |
|       | 25    | 2,936,588 | 7.6  | 2,306,023 | 7.4  | 2,628,656 | 6.2  | 2,623,756 | 7.1  | 12.0 | 8.7 |
|       | 10    | 2,669,243 | 9.4  | 2,123,850 | 8.4  | 2,387,624 | 7.5  | 2,393,572 | 8.4  | 11.4 | 6.4 |
| 40    | 5     | 2,479,104 | 10.4 | 1,978,205 | 9.4  | 2,219,253 | 8.9  | 2,225,520 | 9.6  | 11.3 | 3.7 |
| 40    | 1     | 2,023,680 | 12.5 | 1,647,065 | 11.8 | 1,831,862 | 11.7 | 1,834,202 | 12.0 | 10.3 | 1.2 |
|       | 0.5   | 1,832,462 | 14.5 | 1,496,472 | 13.8 | 1,661,792 | 13.3 | 1,663,575 | 13.9 | 10.1 | 2.2 |
|       | 0.1   | 1,395,838 | 18.6 | 1,171,372 | 17.4 | 1,286,889 | 16.7 | 1,284,699 | 17.6 | 8.7  | 2.6 |
| -     | 25    | 1,381,109 | 17.5 | 1,209,487 | 16.1 | 1,374,778 | 16.0 | 1,321,791 | 16.6 | 7.4  | 1.7 |
|       | 10    | 1,148,381 | 19.6 | 1,051,873 | 18.2 | 1,168,932 | 18.4 | 1,123,062 | 18.7 | 5.6  | 1.4 |
| 70    | 5     | 990,657   | 21.6 | 924,039   | 20.0 | 1,013,266 | 20.5 | 975,987   | 20.7 | 4.8  | 1.7 |
| 70    | 1     | 667,963   | 26.2 | 645,987   | 24.8 | 696,341   | 25.6 | 670,097   | 25.5 | 3.8  | 1.7 |
|       | 0.5   | 532,884   | 31.1 | 527,143   | 29.3 | 558,669   | 30.4 | 539,565   | 30.3 | 3.1  | 2.0 |
|       | 0.1   | 326,688   | 36.4 | 336,008   | 34.5 | 347,226   | 35.7 | 336,641   | 35.6 | 3.1  | 1.8 |
|       | 25    | 531,206   | 29.8 | 497,958   | 31.0 | 533,845   | 29.7 | 521,003   | 30.2 | 3.8  | 2.2 |
|       | 10    | 399,284   | 30.7 | 388,278   | 32.1 | 411,298   | 30.9 | 399,620   | 31.2 | 2.9  | 2.0 |
| 100   | 5     | 311,190   | 31.4 | 309,009   | 32.7 | 324,458   | 32.3 | 314,886   | 32.1 | 2.7  | 0.9 |
| 100   | 1     | 174,020   | 33.9 | 174,376   | 34.1 | 182,008   | 33.5 | 176,801   | 33.9 | 2.6  | 0.9 |
|       | 0.5   | 129,253   | 36.5 | 127,438   | 36.3 | 135,339   | 36.1 | 130,677   | 36.3 | 3.2  | 0.4 |
|       | 0.1   | 78,904    | 33.2 | 80,889    | 34.1 | 82,429    | 32.9 | 80,740    | 33.4 | 2.2  | 1.7 |
|       | 25    | 146,053   | 31.5 | 155,146   | 34.1 | 162,314   | 32.7 | 154,504   | 32.8 | 5.3  | 2.5 |
|       | 10    | 103,815   | 30.2 | 111,168   | 32.0 | 114,847   | 30.9 | 109,943   | 31.0 | 5.1  | 1.9 |
| 130   | 5     | 81,819    | 29.3 | 86,641    | 31.0 | 89,527    | 28.8 | 85,996    | 29.7 | 4.5  | 3.8 |
| 150   | 1     | 50,453    | 25.7 | 52,232    | 27.0 | 55,751    | 24.4 | 52,812    | 25.7 | 5.1  | 5.1 |
|       | 0.5   | 41,790    | 25.1 | 42,382    | 26.3 | 46,695    | 23.8 | 43,622    | 25.0 | 6.1  | 4.8 |
|       | 0.1   | 31,118    | 20.4 | 31,020    | 22.4 | 35,485    | 19.3 | 32,541    | 20.7 | 7.8  | 7.4 |

Table C4. Measured dynamic modulus (psi) and phase angle (°) for mix IM1

| Temp. | Freq. | IM2-      | 3    | IM2-      | 4    | IM2-:     | 5    | Avera     | ge   | CC  | )V  |
|-------|-------|-----------|------|-----------|------|-----------|------|-----------|------|-----|-----|
| (°F)  | (Hz)  | E*        | δ    | E*        | δ    | E*        | δ    | E*        | δ    | E*  | δ   |
|       | 25    | 2,605,963 | 1.9  | 3,033,936 | 1.6  | 2,806,081 | 1.8  | 2,815,327 | 1.8  | 7.6 | 6.1 |
|       | 10    | 2,447,338 | 3.3  | 2,843,993 | 3.9  | 2,636,216 | 3.6  | 2,642,516 | 3.6  | 7.5 | 5.1 |
| 10    | 5     | 2,358,315 | 3.9  | 2,728,723 | 4.4  | 2,538,667 | 4.5  | 2,541,902 | 4.3  | 7.3 | 2.4 |
| 10    | 1     | 2,152,103 | 4.9  | 2,481,817 | 5.4  | 2,300,639 | 5.8  | 2,311,520 | 5.4  | 7.1 | 4.1 |
|       | 0.5   | 2,046,140 | 6.3  | 2,357,737 | 6.4  | 2,192,267 | 6.4  | 2,198,715 | 6.4  | 7.1 | 0.4 |
|       | 0.1   | 1,814,534 | 8.0  | 2,102,922 | 8.1  | 1,949,646 | 8.1  | 1,955,701 | 8.1  | 7.4 | 0.3 |
|       | 25    | 2,128,822 | 6.9  | 2,079,287 | 8.0  | 2,283,495 | 8.4  | 2,163,868 | 7.7  | 4.9 | 4.2 |
|       | 10    | 1,953,805 | 9.3  | 1,883,446 | 9.4  | 2,068,485 | 9.4  | 1,968,579 | 9.4  | 4.7 | 0.3 |
| 40    | 5     | 1,805,862 | 10.7 | 1,745,094 | 10.9 | 1,923,983 | 10.5 | 1,824,980 | 10.7 | 5.0 | 1.5 |
| 40    | 1     | 1,477,836 | 13.6 | 1,426,612 | 13.6 | 1,557,069 | 13.3 | 1,487,172 | 13.5 | 4.4 | 1.2 |
|       | 0.5   | 1,326,630 | 16.0 | 1,282,367 | 16.0 | 1,402,179 | 15.8 | 1,337,059 | 15.9 | 4.5 | 0.6 |
|       | 0.1   | 1,005,749 | 20.5 | 989,641   | 21.0 | 1,060,961 | 20.6 | 1,018,784 | 20.7 | 3.7 | 1.0 |
|       | 25    | 1,164,844 | 17.7 | 1,039,816 | 17.9 | 1,159,003 | 17.7 | 1,121,221 | 17.8 | 6.3 | 0.6 |
| 70    | 10    | 981,247   | 20.6 | 892,251   | 19.5 | 990,120   | 20.2 | 954,540   | 20.1 | 5.7 | 1.8 |
| 70    | 5     | 838,401   | 22.7 | 772,477   | 21.4 | 851,263   | 22.4 | 820,714   | 22.2 | 5.1 | 2.3 |
| 70    | 1     | 556,741   | 27.5 | 526,349   | 25.9 | 564,424   | 27.6 | 549,171   | 27.0 | 3.7 | 3.1 |
|       | 0.5   | 438,200   | 32.0 | 419,561   | 30.7 | 442,962   | 32.5 | 433,575   | 31.7 | 2.9 | 2.9 |
|       | 0.1   | 273,853   | 34.6 | 266,525   | 34.0 | 275,763   | 35.8 | 272,047   | 34.8 | 1.8 | 2.5 |
|       | 25    | 431,713   | 29.4 | 408,029   | 29.7 | 427,375   | 30.5 | 422,372   | 29.9 | 3.0 | 1.5 |
|       | 10    | 325,805   | 30.1 | 310,328   | 29.9 | 329,354   | 31.1 | 321,829   | 30.3 | 3.1 | 2.0 |
| 100   | 5     | 257,763   | 31.1 | 245,458   | 30.6 | 257,528   | 32.3 | 253,583   | 31.3 | 2.8 | 2.8 |
| 100   | 1     | 149,487   | 30.3 | 140,355   | 30.1 | 145,038   | 31.9 | 144,960   | 30.8 | 3.2 | 3.0 |
|       | 0.5   | 116,629   | 31.2 | 106,821   | 31.2 | 110,680   | 33.3 | 111,376   | 31.9 | 4.4 | 3.4 |
|       | 0.1   | 77,841    | 27.3 | 70,007    | 27.3 | 70,706    | 28.5 | 72,851    | 27.7 | 6.0 | 2.2 |
|       | 25    | 131,571   | 29.7 | 131,743   | 28.7 | 138,224   | 31.0 | 133,846   | 29.8 | 2.8 | 3.9 |
|       | 10    | 95,559    | 27.4 | 94,123    | 27.2 | 95,565    | 29.1 | 95,082    | 27.9 | 0.9 | 3.4 |
| 130   | 5     | 75,952    | 25.1 | 74,372    | 25.6 | 75,673    | 27.6 | 75,332    | 26.1 | 1.1 | 3.9 |
| 150   | 1     | 52,245    | 19.6 | 49,839    | 20.7 | 48,044    | 22.4 | 50,043    | 20.9 | 4.2 | 4.3 |
|       | 0.5   | 46,451    | 18.6 | 43,082    | 19.4 | 40,782    | 21.4 | 43,438    | 19.8 | 6.6 | 5.4 |
|       | 0.1   | 37,988    | 15.8 | 36,192    | 15.2 | 31,357    | 18.3 | 35,179    | 16.4 | 9.7 | 9.5 |

Table C5. Measured dynamic modulus (psi) and phase angle (°) for mix IM2

| Temp. | Freq. | IM3-      | 2    | IM3-      | 3    | IM3-      | 4    | Avera     | ge   | CO   | OV   |
|-------|-------|-----------|------|-----------|------|-----------|------|-----------|------|------|------|
| (°F)  | (Hz)  | E*        | δ    | E*        | δ    | E*        | δ    | E*        | δ    | E*   | δ    |
|       | 25    | 4,452,108 | 1.4  | 4,855,793 | 1.3  | 3,972,295 | 1.7  | 4,426,732 | 1.5  | 10.0 | 12.7 |
|       | 10    | 4,147,984 | 2.7  | 4,774,115 | 2.0  | 3,749,068 | 3.4  | 4,223,722 | 2.7  | 12.2 | 26.4 |
| 10    | 5     | 4,061,687 | 3.1  | 4,609,931 | 2.6  | 3,648,963 | 3.9  | 4,106,860 | 3.2  | 11.7 | 19.7 |
| 10    | 1     | 3,732,299 | 3.6  | 4,406,009 | 4.0  | 3,381,910 | 4.6  | 3,840,073 | 4.1  | 13.6 | 7.1  |
|       | 0.5   | 3,601,152 | 4.5  | 4,256,903 | 4.3  | 3,281,101 | 4.7  | 3,713,052 | 4.5  | 13.4 | 4.4  |
|       | 0.1   | 3,193,363 | 5.9  | 3,832,866 | 5.8  | 2,953,355 | 6.5  | 3,326,528 | 6.1  | 13.7 | 5.5  |
|       | 25    | 3,293,186 | 7.0  | 3,264,995 | 6.9  | 3,083,954 | 6.6  | 3,214,045 | 6.8  | 3.5  | 2.6  |
|       | 10    | 3,034,184 | 7.9  | 2,990,993 | 8.8  | 2,803,589 | 8.5  | 2,942,922 | 8.4  | 4.2  | 2.7  |
| 40    | 5     | 2,856,427 | 8.9  | 2,803,244 | 9.4  | 2,619,815 | 9.3  | 2,759,829 | 9.2  | 4.5  | 1.0  |
| 40    | 1     | 2,423,009 | 11.7 | 2,293,669 | 12.2 | 2,199,691 | 11.5 | 2,305,456 | 11.8 | 4.9  | 2.9  |
|       | 0.5   | 2,212,741 | 13.3 | 2,083,455 | 13.7 | 2,011,295 | 13.6 | 2,102,497 | 13.5 | 4.9  | 0.8  |
|       | 0.1   | 1,732,610 | 17.3 | 1,589,018 | 18.0 | 1,586,123 | 16.9 | 1,635,917 | 17.4 | 5.1  | 3.2  |
| 70    | 25    | 1,671,721 | 14.9 | 1,536,779 | 15.9 | 1,510,027 | 16.3 | 1,572,842 | 15.7 | 5.5  | 1.9  |
|       | 10    | 1,423,630 | 17.4 | 1,235,485 | 18.8 | 1,283,071 | 18.4 | 1,314,062 | 18.2 | 7.4  | 1.7  |
| 70    | 5     | 1,236,177 | 19.4 | 1,026,527 | 20.8 | 1,119,150 | 20.0 | 1,127,285 | 20.1 | 9.3  | 2.4  |
| 70    | 1     | 849,901   | 24.0 | 680,152   | 25.9 | 773,213   | 25.0 | 767,755   | 25.0 | 11.1 | 2.1  |
|       | 0.5   | 685,036   | 29.4 | 540,821   | 30.6 | 624,662   | 29.9 | 616,840   | 30.0 | 11.7 | 1.2  |
|       | 0.1   | 429,012   | 35.2 | 337,372   | 35.7 | 392,263   | 34.3 | 386,216   | 35.0 | 11.9 | 1.9  |
|       | 25    | 629,206   | 28.4 | 458,595   | 29.9 | 542,246   | 30.2 | 543,349   | 29.5 | 15.7 | 1.2  |
|       | 10    | 475,783   | 29.1 | 354,810   | 30.2 | 413,327   | 30.8 | 414,640   | 30.0 | 14.6 | 1.3  |
| 100   | 5     | 373,945   | 30.6 | 282,296   | 31.4 | 324,580   | 32.1 | 326,940   | 31.3 | 14.0 | 1.4  |
| 100   | 1     | 212,183   | 31.8 | 162,819   | 32.7 | 178,584   | 33.1 | 184,529   | 32.6 | 13.7 | 0.9  |
|       | 0.5   | 162,625   | 33.6 | 124,567   | 34.7 | 134,239   | 34.6 | 140,477   | 34.3 | 14.1 | 0.6  |
|       | 0.1   | 103,135   | 29.9 | 79,681    | 30.8 | 82,001    | 29.8 | 88,272    | 30.2 | 14.6 | 1.7  |
|       | 25    | 187,590   | 31.0 | 145,030   | 33.8 | 148,449   | 33.2 | 160,356   | 32.6 | 14.7 | 1.7  |
|       | 10    | 134,521   | 27.6 | 109,175   | 29.2 | 105,573   | 30.0 | 116,423   | 28.9 | 13.6 | 1.9  |
| 130   | 5     | 107,288   | 26.2 | 88,131    | 26.4 | 83,579    | 27.6 | 92,999    | 26.7 | 13.5 | 2.3  |
| 150   | 1     | 68,735    | 20.9 | 60,075    | 20.1 | 54,684    | 21.8 | 61,165    | 21.0 | 11.6 | 3.9  |
|       | 0.5   | 60,064    | 19.8 | 53,125    | 18.9 | 46,832    | 20.4 | 53,340    | 19.7 | 12.4 | 3.7  |
|       | 0.1   | 48,331    | 16.1 | 45,660    | 14.7 | 37,749    | 16.4 | 43,913    | 15.7 | 12.5 | 5.3  |

Table C6. Measured dynamic modulus (psi) and phase angle (°) for mix IM3

| Temp. | Freq. | IM4-      | 2    | IM4-      | 3    | IM4-      | 4    | Avera     | ige  | CC   | )V   |
|-------|-------|-----------|------|-----------|------|-----------|------|-----------|------|------|------|
| (°F)  | (Hz)  | E*        | δ    | E*        | δ    | E*        | δ    | E*        | δ    | E*   | δ    |
|       | 25    | 2,657,970 | 2.3  | 2,812,233 | 2.7  | 4,580,072 | 1.7  | 3,350,092 | 2.2  | 31.9 | 22.9 |
|       | 10    | 2,475,741 | 3.6  | 2,644,419 | 4.1  | 4,164,395 | 3.1  | 3,094,851 | 3.6  | 30.1 | 13.7 |
| 10    | 5     | 2,419,100 | 4.0  | 2,567,555 | 4.2  | 4,045,120 | 4.1  | 3,010,592 | 4.1  | 29.9 | 1.8  |
| 10    | 1     | 2,233,736 | 4.8  | 2,407,288 | 5.2  | 3,709,436 | 4.7  | 2,783,487 | 4.9  | 29.0 | 5.9  |
|       | 0.5   | 2,143,259 | 5.7  | 2,322,889 | 5.8  | 3,573,326 | 5.7  | 2,679,825 | 5.7  | 29.1 | 1.2  |
|       | 0.1   | 1,925,529 | 7.5  | 2,105,238 | 7.3  | 3,390,296 | 7.5  | 2,473,688 | 7.4  | 32.3 | 1.3  |
|       | 25    | 2,643,782 | 5.4  | 2,429,997 | 8.2  | 3,321,266 | 4.5  | 2,798,348 | 6.0  | 16.6 | 30.5 |
|       | 10    | 2,407,619 | 8.9  | 2,214,430 | 9.9  | 2,965,105 | 8.0  | 2,529,051 | 8.9  | 15.4 | 10.7 |
| 40    | 5     | 2,232,901 | 10.4 | 2,044,376 | 10.9 | 2,731,903 | 9.2  | 2,336,393 | 10.2 | 15.2 | 8.1  |
| 40    | 1     | 1,833,855 | 13.3 | 1,667,274 | 13.6 | 2,211,338 | 12.6 | 1,904,156 | 13.1 | 14.6 | 3.7  |
|       | 0.5   | 1,651,763 | 15.3 | 1,507,748 | 16.4 | 1,975,491 | 15.0 | 1,711,667 | 15.6 | 14.0 | 4.4  |
|       | 0.1   | 1,237,071 | 20.6 | 1,125,176 | 21.5 | 1,466,763 | 19.4 | 1,276,337 | 20.5 | 13.6 | 5.1  |
| 70    | 25    | 1,285,329 | 18.1 | 1,141,262 | 19.3 | 1,240,421 | 18.5 | 1,222,337 | 18.6 | 6.0  | 2.1  |
|       | 10    | 1,073,681 | 20.4 | 940,392   | 21.4 | 1,009,489 | 21.4 | 1,007,854 | 21.0 | 6.6  | 1.0  |
|       | 5     | 912,361   | 22.4 | 799,226   | 23.9 | 857,114   | 23.5 | 856,234   | 23.3 | 6.6  | 1.4  |
| 70    | 1     | 586,279   | 28.4 | 512,119   | 29.6 | 554,227   | 28.7 | 550,875   | 28.9 | 6.8  | 1.5  |
|       | 0.5   | 457,702   | 34.0 | 395,819   | 34.7 | 432,541   | 33.5 | 428,687   | 34.1 | 7.3  | 1.6  |
|       | 0.1   | 264,301   | 37.6 | 232,494   | 38.1 | 259,250   | 37.3 | 252,015   | 37.6 | 6.8  | 1.0  |
|       | 25    | 392,634   | 33.2 | 320,708   | 33.3 | 416,349   | 32.6 | 376,564   | 33.0 | 13.2 | 1.1  |
|       | 10    | 284,060   | 33.4 | 229,886   | 33.5 | 303,165   | 33.6 | 272,370   | 33.5 | 14.0 | 0.1  |
| 100   | 5     | 216,991   | 33.7 | 174,849   | 33.6 | 228,749   | 34.3 | 206,863   | 33.9 | 13.7 | 1.1  |
| 100   | 1     | 120,020   | 31.5 | 95,694    | 30.8 | 122,776   | 33.2 | 112,830   | 31.8 | 13.2 | 3.9  |
|       | 0.5   | 93,060    | 31.3 | 74,265    | 30.2 | 92,747    | 33.2 | 86,691    | 31.6 | 12.4 | 4.8  |
|       | 0.1   | 62,819    | 25.4 | 50,296    | 24.1 | 60,531    | 27.4 | 57,882    | 25.6 | 11.5 | 6.4  |
|       | 25    | 106,757   | 27.8 | 88,874    | 29.6 | 118,890   | 30.3 | 104,840   | 29.2 | 14.4 | 1.8  |
|       | 10    | 77,808    | 24.6 | 62,763    | 26.3 | 83,239    | 27.7 | 74,603    | 26.2 | 14.2 | 3.3  |
| 120   | 5     | 63,655    | 22.4 | 50,928    | 23.7 | 66,665    | 25.3 | 60,416    | 23.8 | 13.8 | 3.8  |
| 150   | 1     | 46,059    | 17.2 | 36,741    | 17.9 | 45,635    | 19.7 | 42,812    | 18.3 | 12.3 | 5.0  |
|       | 0.5   | 40,996    | 16.4 | 32,916    | 17.3 | 39,905    | 18.9 | 37,939    | 17.5 | 11.6 | 4.8  |
|       | 0.1   | 34,751    | 14.3 | 28,956    | 14.9 | 33,278    | 16.5 | 32,328    | 15.2 | 9.3  | 5.6  |

Table C7. Measured dynamic modulus (psi) and phase angle (°) for mix IM4

| Temp. | Freq. | BM1-      | 2    | BM1-      | 3    | BM1-      | 4    | Avera     | ge   | CC   | )V   |
|-------|-------|-----------|------|-----------|------|-----------|------|-----------|------|------|------|
| (°F)  | (Hz)  | E*        | δ    | E*        | δ    | E*        | δ    | E*        | δ    | E*   | δ    |
|       | 25    | 5,447,739 | 2.1  | 3,485,635 | 2.6  | 3,882,122 | 2.1  | 4,271,832 | 2.3  | 24.3 | 10.9 |
|       | 10    | 5,413,769 | 3.1  | 3,327,852 | 4.0  | 3,785,768 | 4.1  | 4,175,796 | 3.7  | 26.3 | 5.3  |
| 10    | 5     | 5,324,707 | 4.1  | 3,184,952 | 4.0  | 3,682,742 | 4.1  | 4,064,134 | 4.0  | 27.6 | 2.3  |
| 10    | 1     | 4,913,648 | 4.5  | 2,949,123 | 5.3  | 3,403,574 | 5.2  | 3,755,448 | 5.0  | 27.4 | 3.1  |
|       | 0.5   | 4,645,392 | 5.3  | 2,843,608 | 5.9  | 3,256,281 | 6.8  | 3,581,760 | 6.0  | 26.4 | 8.3  |
|       | 0.1   | 4,165,139 | 6.2  | 2,561,345 | 7.5  | 2,926,127 | 7.2  | 3,217,537 | 6.9  | 26.1 | 4.1  |
|       | 25    | 3,553,105 | 8.0  | 2,650,021 | 7.4  | 2,108,273 | 8.3  | 2,770,466 | 7.9  | 26.3 | 5.6  |
|       | 10    | 2,887,174 | 9.0  | 2,360,778 | 8.3  | 1,884,691 | 9.7  | 2,377,548 | 9.0  | 21.1 | 8.0  |
| 40    | 5     | 2,665,246 | 10.0 | 2,176,510 | 9.8  | 1,760,262 | 10.5 | 2,200,672 | 10.1 | 20.6 | 3.3  |
| 40    | 1     | 2,387,308 | 12.7 | 1,767,299 | 12.4 | 1,454,401 | 12.7 | 1,869,669 | 12.6 | 25.4 | 1.1  |
|       | 0.5   | 2,153,432 | 14.7 | 1,587,311 | 14.5 | 1,314,041 | 14.8 | 1,684,928 | 14.7 | 25.4 | 1.1  |
|       | 0.1   | 1,594,256 | 18.7 | 1,185,581 | 18.5 | 1,179,444 | 18.9 | 1,319,760 | 18.7 | 18.0 | 0.9  |
| -     | 25    | 1,765,965 | 16.9 | 1,182,073 | 18.1 | 1,310,017 | 17.5 | 1,419,351 | 17.5 | 21.6 | 2.0  |
|       | 10    | 1,449,398 | 19.3 | 1,007,644 | 20.1 | 1,104,885 | 19.7 | 1,187,309 | 19.7 | 19.6 | 1.1  |
| 70    | 5     | 1,228,859 | 21.4 | 880,915   | 21.9 | 951,448   | 21.6 | 1,020,407 | 21.6 | 18.0 | 0.7  |
| 70    | 1     | 803,462   | 26.5 | 612,984   | 26.3 | 644,093   | 26.8 | 686,846   | 26.5 | 14.9 | 1.1  |
|       | 0.5   | 632,776   | 31.5 | 498,213   | 31.1 | 518,879   | 32.0 | 549,956   | 31.5 | 13.2 | 1.4  |
|       | 0.1   | 380,176   | 35.7 | 317,447   | 35.1 | 335,334   | 36.1 | 344,319   | 35.6 | 9.4  | 1.4  |
|       | 25    | 525,283   | 30.1 | 418,352   | 31.7 | 489,516   | 31.7 | 477,717   | 31.2 | 11.4 | 1.0  |
|       | 10    | 401,153   | 30.2 | 339,781   | 31.4 | 399,793   | 31.9 | 380,242   | 31.1 | 9.2  | 1.3  |
| 100   | 5     | 315,981   | 31.2 | 270,744   | 31.9 | 310,619   | 32.8 | 299,115   | 31.9 | 8.3  | 1.6  |
| 100   | 1     | 179,849   | 31.4 | 158,322   | 32.1 | 174,455   | 33.2 | 170,875   | 32.2 | 6.6  | 1.9  |
|       | 0.5   | 136,912   | 32.7 | 123,285   | 33.7 | 131,194   | 35.2 | 130,464   | 33.9 | 5.2  | 2.5  |
|       | 0.1   | 88,572    | 29.0 | 80,196    | 30.8 | 82,686    | 31.6 | 83,818    | 30.4 | 5.1  | 1.9  |
|       | 25    | 176,818   | 30.6 | 139,727   | 31.0 | 152,199   | 31.5 | 156,248   | 31.0 | 12.1 | 0.8  |
|       | 10    | 124,760   | 28.2 | 104,543   | 29.0 | 113,799   | 29.1 | 114,367   | 28.8 | 8.8  | 0.6  |
| 130   | 5     | 100,603   | 26.7 | 83,649    | 27.5 | 90,773    | 27.9 | 91,675    | 27.4 | 9.3  | 1.0  |
| 100   | 1     | 65,282    | 22.6 | 53,867    | 22.8 | 57,180    | 23.6 | 58,776    | 23.0 | 10.0 | 1.9  |
|       | 0.5   | 56,188    | 21.3 | 46,972    | 21.7 | 48,735    | 22.6 | 50,632    | 21.9 | 9.7  | 2.3  |
| _     | 0.1   | 45,979    | 17.3 | 38,053    | 18.3 | 37,690    | 18.7 | 40,574    | 18.1 | 11.5 | 1.6  |

Table C8. Measured dynamic modulus (psi) and phase angle (°) for mix BM1

| Temp.    | Freq. | BM2-      | 1    | BM2-      | 2    | BM2-      | 3    | Avera     | ge   | CC   | )V   |
|----------|-------|-----------|------|-----------|------|-----------|------|-----------|------|------|------|
| (°F)     | (Hz)  | E*        | δ    | E*        | δ    | E*        | δ    | E*        | δ    | E*   | δ    |
| <u>`</u> | 25    | 4,651,571 | 2.1  | 4,714,695 | 2.3  | 4,267,176 | 3.0  | 4,544,481 | 2.5  | 5.3  | 15.2 |
|          | 10    | 4,518,000 | 5.1  | 4,526,405 | 4.5  | 4,190,307 | 5.4  | 4,411,571 | 5.0  | 4.3  | 9.7  |
| 10       | 5     | 4,367,265 | 5.8  | 4,342,129 | 5.2  | 4,021,055 | 5.5  | 4,243,483 | 5.5  | 4.5  | 3.1  |
| 10       | 1     | 3,858,460 | 6.5  | 4,074,193 | 5.8  | 3,633,689 | 8.0  | 3,855,447 | 6.8  | 5.7  | 16.5 |
|          | 0.5   | 3,685,568 | 7.6  | 3,873,692 | 7.7  | 3,401,185 | 8.6  | 3,653,482 | 8.0  | 6.5  | 5.4  |
|          | 0.1   | 3,170,742 | 9.9  | 3,319,661 | 9.8  | 2,534,385 | 10.6 | 3,008,263 | 10.1 | 13.9 | 3.8  |
|          | 25    | 2,549,444 | 8.7  | 2,656,520 | 10.1 | 2,428,547 | 9.7  | 2,544,837 | 9.5  | 4.5  | 3.1  |
|          | 10    | 2,213,821 | 12.0 | 2,342,522 | 10.9 | 2,130,873 | 12.4 | 2,229,072 | 11.7 | 4.8  | 6.4  |
| 40       | 5     | 2,003,846 | 13.9 | 2,150,109 | 13.9 | 1,959,750 | 13.6 | 2,037,902 | 13.8 | 4.9  | 1.0  |
| 40       | 1     | 1,524,369 | 17.1 | 1,623,750 | 17.3 | 1,495,662 | 17.2 | 1,547,927 | 17.2 | 4.3  | 0.3  |
|          | 0.5   | 1,294,042 | 20.4 | 1,379,798 | 20.7 | 1,259,423 | 22.2 | 1,311,087 | 21.1 | 4.7  | 3.8  |
|          | 0.1   | 870,244   | 27.2 | 919,171   | 28.5 | 846,866   | 28.5 | 878,760   | 28.1 | 4.2  | 0.9  |
|          | 25    | 911,738   | 24.2 | 921,885   | 23.0 | 971,132   | 23.2 | 934,918   | 23.5 | 3.4  | 1.0  |
| 70       | 10    | 727,513   | 25.9 | 725,356   | 25.6 | 782,963   | 24.7 | 745,277   | 25.4 | 4.4  | 1.8  |
| 70       | 5     | 599,049   | 27.9 | 590,919   | 27.6 | 654,171   | 26.4 | 614,713   | 27.3 | 5.6  | 2.4  |
| , 0      | 1     | 365,923   | 31.5 | 356,618   | 31.6 | 404,076   | 30.2 | 375,539   | 31.1 | 6.7  | 2.3  |
|          | 0.5   | 284,493   | 35.5 | 273,293   | 35.5 | 313,885   | 34.0 | 290,557   | 35.0 | 7.2  | 2.1  |
|          | 0.1   | 177,334   | 35.4 | 167,309   | 35.6 | 198,888   | 35.2 | 181,177   | 35.4 | 8.9  | 0.6  |
|          | 25    | 263,263   | 32.2 | 268,881   | 32.2 | 312,267   | 29.8 | 281,470   | 31.4 | 9.5  | 4.0  |
|          | 10    | 191,351   | 30.2 | 200,622   | 29.4 | 228,510   | 28.7 | 206,827   | 29.4 | 9.4  | 1.5  |
| 100      | 5     | 152,247   | 28.5 | 160,347   | 27.7 | 183,511   | 26.8 | 165,368   | 27.7 | 9.8  | 1.8  |
| 100      | 1     | 97,052    | 23.4 | 104,271   | 22.7 | 120,186   | 21.7 | 107,170   | 22.6 | 11.0 | 2.4  |
|          | 0.5   | 82,578    | 22.4 | 89,528    | 21.6 | 104,784   | 20.1 | 92,297    | 21.4 | 12.3 | 3.7  |
|          | 0.1   | 64,200    | 18.8 | 70,283    | 18.0 | 87,139    | 16.1 | 73,874    | 17.6 | 16.1 | 5.6  |
|          | 25    | 85,700    | 24.1 | 101,687   | 28.9 | 130,659   | 21.7 | 106,016   | 24.9 | 21.5 | 14.5 |
|          | 10    | 69,581    | 21.1 | 76,132    | 24.5 | 99,583    | 17.9 | 81,765    | 21.2 | 19.3 | 15.6 |
| 130      | 5     | 59,519    | 19.4 | 65,951    | 20.6 | 86,538    | 15.4 | 70,669    | 18.4 | 20.0 | 14.3 |
| 150      | 1     | 44,679    | 15.6 | 56,015    | 15.2 | 71,538    | 10.5 | 57,411    | 13.8 | 23.5 | 17.7 |
|          | 0.5   | 39,750    | 16.2 | 52,816    | 16.2 | 68,337    | 10.5 | 53,635    | 14.3 | 26.7 | 20.3 |
|          | 0.1   | 31,541    | 16.7 | 45,642    | 18.3 | 66,560    | 14.8 | 47,915    | 16.6 | 36.8 | 10.5 |

Table C9. Measured dynamic modulus (psi) and phase angle (°) for mix BM2

| Temp.                                                                       | Freq. | BM3-      | 2    | BM3-      | 3    | BM3-      | 4    | Avera     | ge   | CC   | )V   |
|-----------------------------------------------------------------------------|-------|-----------|------|-----------|------|-----------|------|-----------|------|------|------|
| (°F)                                                                        | (Hz)  | E*        | δ    | E*        | δ    | E*        | δ    | E*        | δ    | E*   | δ    |
|                                                                             | 25    | 3,905,150 | 1.0  | 4,500,290 | 1.2  | 5,846,646 | 0.7  | 4,750,695 | 1.0  | 20.9 | 25.8 |
|                                                                             | 10    | 3,700,068 | 2.8  | 4,299,523 | 2.9  | 5,799,677 | 2.8  | 4,599,756 | 2.8  | 23.5 | 2.3  |
| Temp.         (°F)         10         40         70         100         130 | 5     | 3,611,326 | 3.0  | 4,166,157 | 3.2  | 5,656,177 | 3.0  | 4,477,887 | 3.1  | 23.6 | 4.4  |
| 10                                                                          | 1     | 3,378,276 | 4.0  | 3,879,639 | 4.3  | 5,246,119 | 4.4  | 4,168,011 | 4.2  | 23.2 | 2.1  |
|                                                                             | 0.5   | 3,278,735 | 4.5  | 3,721,678 | 4.6  | 5,089,470 | 4.6  | 4,029,961 | 4.6  | 23.4 | 0.9  |
|                                                                             | 0.1   | 3,034,728 | 5.4  | 3,383,135 | 5.6  | 4,565,363 | 6.0  | 3,661,075 | 5.6  | 21.9 | 3.4  |
|                                                                             | 25    | 3,326,260 | 6.1  | 2,918,242 | 7.0  | 3,740,895 | 5.9  | 3,328,466 | 6.3  | 12.4 | 8.2  |
|                                                                             | 10    | 3,132,914 | 7.6  | 2,694,654 | 8.3  | 3,467,443 | 7.1  | 3,098,337 | 7.6  | 12.5 | 8.0  |
| 40                                                                          | 5     | 2,962,230 | 8.3  | 2,552,201 | 9.0  | 3,266,949 | 7.6  | 2,927,127 | 8.3  | 12.3 | 8.4  |
| 40                                                                          | 1     | 2,512,802 | 10.7 | 2,169,892 | 11.4 | 2,792,918 | 9.5  | 2,491,871 | 10.5 | 12.5 | 8.8  |
|                                                                             | 0.5   | 2,786,871 | 12.3 | 1,979,919 | 12.9 | 3,065,746 | 11.4 | 2,610,845 | 12.2 | 21.6 | 6.1  |
|                                                                             | 0.1   | 2,219,083 | 15.6 | 1,581,851 | 16.9 | 2,401,845 | 14.4 | 2,067,593 | 15.6 | 20.8 | 7.9  |
|                                                                             | 25    | 2,478,302 | 14.6 | 2,451,896 | 16.4 | 2,118,546 | 14.6 | 2,349,581 | 15.2 | 8.5  | 6.1  |
| 70                                                                          | 10    | 2,154,928 | 16.1 | 2,131,138 | 18.0 | 1,812,104 | 16.7 | 2,032,723 | 16.9 | 9.4  | 4.0  |
| 70                                                                          | 5     | 1,890,333 | 17.8 | 1,873,017 | 19.9 | 1,590,944 | 18.7 | 1,784,765 | 18.8 | 9.4  | 3.6  |
| 70                                                                          | 1     | 1,324,571 | 23.4 | 1,303,774 | 25.0 | 1,114,390 | 23.9 | 1,247,578 | 24.1 | 9.3  | 2.4  |
|                                                                             | 0.5   | 1,074,409 | 28.5 | 1,061,624 | 30.1 | 909,894   | 29.0 | 1,015,309 | 29.2 | 9.0  | 2.0  |
|                                                                             | 0.1   | 675,622   | 35.0 | 655,186   | 34.6 | 580,895   | 34.7 | 637,234   | 34.7 | 7.8  | 0.2  |
|                                                                             | 25    | 949,573   | 27.0 | 756,416   | 27.9 | 889,094   | 27.7 | 865,027   | 27.5 | 11.4 | 0.7  |
|                                                                             | 10    | 719,699   | 29.0 | 577,747   | 29.2 | 666,049   | 29.1 | 654,499   | 29.1 | 11.0 | 0.2  |
| 100                                                                         | 5     | 575,496   | 30.9 | 455,777   | 31.2 | 530,107   | 31.1 | 520,460   | 31.1 | 11.6 | 0.2  |
| 100                                                                         | 1     | 326,092   | 34.0 | 256,419   | 32.8 | 301,151   | 32.7 | 294,554   | 33.2 | 12.0 | 0.8  |
|                                                                             | 0.5   | 244,189   | 37.4 | 193,379   | 35.2 | 228,570   | 34.9 | 222,046   | 35.8 | 11.7 | 1.3  |
|                                                                             | 0.1   | 147,025   | 36.0 | 115,953   | 32.0 | 144,868   | 32.3 | 135,949   | 33.4 | 12.8 | 2.3  |
|                                                                             | 25    | 255,963   | 33.0 | 196,535   | 34.4 | 257,083   | 31.4 | 236,527   | 32.9 | 14.6 | 4.5  |
|                                                                             | 10    | 180,644   | 31.0 | 141,720   | 31.3 | 179,485   | 30.0 | 167,283   | 30.7 | 13.2 | 2.2  |
| 130                                                                         | 5     | 141,426   | 29.3 | 111,404   | 29.4 | 141,275   | 28.1 | 131,368   | 28.9 | 13.2 | 2.2  |
| 150                                                                         | 1     | 86,980    | 25.2 | 70,200    | 23.3 | 90,302    | 23.1 | 82,494    | 23.9 | 13.1 | 1.6  |
|                                                                             | 0.5   | 72,547    | 24.5 | 59,844    | 22.0 | 75,484    | 21.7 | 69,292    | 22.7 | 12.0 | 2.4  |
|                                                                             | 0.1   | 55,925    | 20.7 | 47,528    | 16.5 | 57,005    | 17.7 | 53,486    | 18.3 | 9.7  | 4.9  |

Table C10. Measured dynamic modulus (psi) and phase angle (°) for mix BM3

| Temp. | Freq. | BM4-      | 2    | BM4-      | 3    | BM4-      | 4    | Avera     | ge   | CC   | )V   |
|-------|-------|-----------|------|-----------|------|-----------|------|-----------|------|------|------|
| (°F)  | (Hz)  | E*        | δ    | E*        | δ    | E*        | δ    | E*        | δ    | E*   | δ    |
|       | 25    | 3,540,046 | 2.1  | 3,842,694 | 1.4  | 4,707,724 | 1.9  | 4,030,155 | 1.8  | 15.0 | 15.4 |
|       | 10    | 3,368,617 | 3.8  | 3,577,179 | 3.6  | 4,544,577 | 3.9  | 3,830,124 | 3.8  | 16.4 | 4.9  |
| 10    | 5     | 3,263,571 | 4.4  | 3,451,583 | 4.1  | 4,392,572 | 4.6  | 3,702,575 | 4.3  | 16.3 | 6.4  |
| 10    | 1     | 2,981,059 | 5.6  | 3,147,331 | 5.4  | 3,949,895 | 5.9  | 3,359,428 | 5.6  | 15.4 | 4.7  |
|       | 0.5   | 2,840,533 | 6.6  | 2,999,772 | 6.5  | 3,772,071 | 6.9  | 3,204,125 | 6.7  | 15.6 | 2.9  |
|       | 0.1   | 2,543,403 | 8.1  | 2,642,462 | 7.9  | 3,333,092 | 8.9  | 2,839,652 | 8.3  | 15.1 | 5.6  |
|       | 25    | 2,721,273 | 7.1  | 2,507,241 | 7.8  | 3,041,786 | 8.3  | 2,756,767 | 7.8  | 9.8  | 4.0  |
|       | 10    | 2,479,387 | 8.5  | 2,264,334 | 9.9  | 2,745,971 | 9.5  | 2,496,564 | 9.3  | 9.7  | 3.4  |
| 40    | 5     | 2,287,170 | 10.2 | 2,087,871 | 11.5 | 2,530,745 | 10.9 | 2,301,929 | 10.9 | 9.6  | 3.2  |
| 40    | 1     | 1,846,520 | 13.3 | 1,663,513 | 14.7 | 2,018,162 | 13.7 | 1,842,732 | 13.9 | 9.6  | 4.1  |
|       | 0.5   | 1,653,696 | 16.0 | 1,476,546 | 17.5 | 1,796,165 | 16.2 | 1,642,136 | 16.5 | 9.8  | 4.1  |
|       | 0.1   | 1,227,941 | 21.3 | 1,088,847 | 22.7 | 1,318,185 | 20.7 | 1,211,658 | 21.6 | 9.5  | 4.5  |
|       | 25    | 1,228,439 | 20.4 | 1,197,603 | 20.5 | 1,333,620 | 18.6 | 1,253,220 | 19.8 | 5.7  | 4.9  |
|       | 10    | 1,027,762 | 22.1 | 1,002,541 | 21.9 | 1,115,483 | 20.7 | 1,048,595 | 21.6 | 5.7  | 2.8  |
| 70    | 5     | 874,549   | 24.3 | 857,984   | 24.0 | 950,821   | 22.8 | 894,451   | 23.7 | 5.5  | 2.8  |
| 70    | 1     | 565,797   | 29.0 | 557,965   | 28.6 | 630,825   | 27.5 | 584,862   | 28.4 | 6.8  | 2.0  |
|       | 0.5   | 438,742   | 33.8 | 432,133   | 33.3 | 497,287   | 32.3 | 456,054   | 33.1 | 7.9  | 1.6  |
|       | 0.1   | 266,331   | 35.6 | 264,959   | 36.2 | 307,673   | 35.4 | 279,654   | 35.7 | 8.7  | 1.1  |
|       | 25    | 392,481   | 30.5 | 333,837   | 31.9 | 521,892   | 29.8 | 416,070   | 30.7 | 23.1 | 3.3  |
|       | 10    | 293,821   | 31.3 | 263,456   | 32.2 | 399,434   | 29.7 | 318,904   | 31.1 | 22.4 | 3.9  |
| 100   | 5     | 229,641   | 31.7 | 206,954   | 32.5 | 314,677   | 31.0 | 250,424   | 31.7 | 22.7 | 2.4  |
| 100   | 1     | 130,671   | 29.8 | 116,785   | 31.2 | 178,562   | 31.4 | 142,006   | 30.8 | 22.8 | 1.0  |
|       | 0.5   | 100,790   | 30.0 | 89,973    | 32.1 | 134,823   | 32.9 | 108,528   | 31.7 | 21.6 | 2.0  |
|       | 0.1   | 67,640    | 25.1 | 58,320    | 27.3 | 85,374    | 29.0 | 70,445    | 27.1 | 19.5 | 3.8  |
|       | 25    | 119,647   | 29.8 | 112,410   | 31.0 | 158,656   | 30.5 | 130,238   | 30.4 | 19.1 | 0.9  |
|       | 10    | 86,973    | 26.6 | 79,318    | 28.8 | 112,840   | 28.4 | 93,043    | 27.9 | 18.9 | 1.5  |
| 130   | 5     | 70,839    | 24.5 | 62,337    | 27.2 | 89,867    | 26.9 | 74,348    | 26.2 | 19.0 | 2.0  |
| 150   | 1     | 47,882    | 19.5 | 40,235    | 22.7 | 58,469    | 22.3 | 48,862    | 21.5 | 18.7 | 2.8  |
|       | 0.5   | 41,575    | 18.8 | 34,007    | 22.6 | 49,814    | 21.8 | 41,799    | 21.1 | 18.9 | 3.6  |
| _     | 0.1   | 33,536    | 15.9 | 26,082    | 18.5 | 39,175    | 19.3 | 32,931    | 17.9 | 19.9 | 4.0  |

Table C11. Measured dynamic modulus (psi) and phase angle (°) for mix BM4